首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
  1. Understanding the drivers of trait selection is critical for resolving community assembly processes. Here, we test the importance of environmental filtering and trait covariance for structuring the functional traits of understory herbaceous communities distributed along a natural environmental resource gradient that varied in soil moisture, temperature, and nitrogen availability, produced by different topographic positions in the southern Appalachian Mountains.
  2. To uncover potential differences in community‐level trait responses to the resource gradient, we quantified the averages and variances of both abundance‐weighted and unweighted values for six functional traits (vegetative height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δ13C) using 15 individuals of each of the 108 species of understory herbs found at two sites in the southern Appalachians of western North Carolina, USA.
  3. Environmental variables were better predictors of weighted than unweighted community‐level average trait values for all but height and leaf N, indicating strong environmental filtering of plant abundance. Community‐level variance patterns also showed increased convergence of abundance‐weighted traits as resource limitation became more severe.
  4. Functional trait covariance patterns based on weighted averages were uniform across the gradient, whereas coordination based on unweighted averages was inconsistent and varied with environmental context. In line with these results, structural equation modeling revealed that unweighted community‐average traits responded directly to local environmental variation, whereas weighted community‐average traits responded indirectly to local environmental variation through trait coordination.
  5. Our finding that trait coordination is more important for explaining the distribution of weighted than unweighted average trait values along the gradient indicates that environmental filtering acts on multiple traits simultaneously, with abundant species possessing more favorable combinations of traits for maximizing fitness in a given environment.
  相似文献   

2.
3.
Background and AimsLessons from above-ground trait ecology and resource economics theory may not be directly translatable to below-ground traits due to differences in function, trade-offs and environmental constraints. Here we examine root functional traits within and across species along a fine-scale hydrological gradient. We ask two related questions: (1) What is the relative magnitude of trait variation across the gradient for within- versus among-species variation? (2) Do correlations among below-ground plant traits conform with predictions from resource-economic spectrum theory?MethodsWe sampled four below-ground fine-root traits (specific root length, branching intensity, root tissue density and root dry matter content) and four above-ground traits (specific leaf area, leaf size, plant height and leaf dry matter content) in vascular plants along a fine-scale hydrological gradient within a wet heathland community in south-eastern Australia. Below-ground and above-ground traits were sampled both within and among species.Key ResultsRoot traits shifted both within and among species across the hydrological gradient. Within- and among-species patterns for root tissue density showed similar declines towards the wetter end of the gradient. Other root traits showed a variety of patterns with respect to within- and among-species variation. Filtering of species has a stronger effect compared with the average within-species shift: the slopes of the relationships between soil moisture and traits were steeper across species than slopes of within species. Between species, below-ground traits were only weakly linked to each other and to above-ground traits, but these weak links did in some cases correspond with predictions from economic theory.ConclusionsOne of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.  相似文献   

4.
The leaf economics spectrum (LES) describes a major axis of plant functional trait variation worldwide, defining suites of leaf traits aligned with resource‐acquisitive to resource‐conservative ecological strategies. The LES has been interpreted to arise from leaf‐level trade‐offs among ecophysiological traits common to all plants. However, it has been suggested that the defining leaf‐level trade‐offs of the LES may not hold within specific functional groups (e.g., herbs) nor within many groups of closely related species, which challenges the usefulness of the LES paradigm across evolutionary scales. Here, we examine the evolution of the LES across 28 species of the diverse herbaceous genus Helianthus (the sunflowers), which occupies a wide range of habitats and climate variation across North America. Using a phylogenetic comparative approach, we find repeated evolution of more resource‐acquisitive LES strategies in cooler, drier, and more fertile environments. We also find macroevolutionary correlations among LES traits that recapitulate aspects of the global LES, but with one major difference: leaf mass per area is uncorrelated with leaf lifespan. This indicates that whole‐plant processes likely drive variation in leaf lifespan across Helianthus, rather than leaf‐level trade‐offs. These results suggest that LES patterns do not reflect universal physiological trade‐offs at small evolutionary scales.  相似文献   

5.
The leaf economics spectrum (LES) is a prominent ecophysiological paradigm that describes global variation in leaf physiology across plant ecological strategies using a handful of key traits. Nearly a decade ago, Shipley et al. (2006) used structural equation modelling to explore the causal functional relationships among LES traits that give rise to their strong global covariation. They concluded that an unmeasured trait drives LES covariation, sparking efforts to identify the latent physiological trait underlying the ‘origin’ of the LES. Here, we use newly developed phylogenetic structural equation modelling approaches to reassess these conclusions using both global LES data as well as data collected across scales in the genus Helianthus. For global LES data, accounting for phylogenetic non‐independence indicates that no additional unmeasured traits are required to explain LES covariation. Across datasets in Helianthus, trait relationships are highly variable, indicating that global‐scale models may poorly describe LES covariation at non‐global scales.  相似文献   

6.
The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait–trait covariation. We found that most variation in LES traits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species. LES traits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation in LES traits cannot always be interpreted as differences in resource use strategy.  相似文献   

7.
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species'' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.  相似文献   

8.
Background and AimsSize-dependent changes in plant traits are an important source of intraspecific trait variation. However, there are few studies that have tested if leaf trait co-variation and/or trade-offs follow a within-genotype leaf economics spectrum (LES) related to plant size and reproductive onset. To our knowledge, there are no studies on any plant species that have tested whether or not the shape of a within-genotype LES that describes how traits covary across whole plant sizes, is the same as the shape of a within-genotype LES that represents environmentally driven trait plasticity.MethodsWe quantified size-dependent variation in eight leaf traits in a single coffee genotype (Coffea arabica var. Caturra) in managed agroecosystems with different environmental conditions (light and fertilization treatments), and evaluated these patterns with respect to reproductive onset. We also evaluated if trait covariation along a within-genotype plant-size LES differed from a within-genotype environmental LES defined with trait data from coffee growing in different environmental conditions.Key ResultsLeaf economics traits related to resource acquisition – maximum photosynthetic rates (A) and mass-based leaf nitrogen (N) concentrations – declined linearly with plant size. Structural traits – leaf mass, leaf thickness, and leaf mass per unit area (LMA) – and leaf area increased with plant size beyond reproductive onset, then declined in larger plants. Three primary LES traits (mass-based A, leaf N and LMA) covaried across a within-genotype plant-size LES, with plants moving towards the ‘resource-conserving’ end of the LES as they grow larger; in coffee these patterns were nearly identical to a within-genotype environmental LES.ConclusionsOur results demonstrate that a plant-size LES exists within a single genotype. Our findings indicate that in managed agroecosystems where resource availability is high the role of reproductive onset in driving within-genotype trait variability, and the strength of covariation and trade-offs among LES traits, are less pronounced compared with plants in natural systems. The consistency in trait covariation in coffee along both plant-size and environmental LES axes indicates strong constraints on leaf form and function that exist within plant genotypes.  相似文献   

9.
表型变异是植物应对环境变化的一种策略。酸枣植物从中国东部沿海到内陆腹地均有分布,其表型性状的变异可能解释其对自然干旱梯度的适应机制。为验证这一假说,以烟台、石家庄、银川、吐鲁番4个自然干旱梯度生境中生长的酸枣三年生植株的12个表型性状为调查研究对象,采用变异系数和巢式方差分析对酸枣的表型变异进行分析。结果表明:(1)从烟台到银川,叶面积、叶长、叶周长和叶柄长总体呈减小的趋势,而比叶面积呈增大的趋势;(2)随着干旱程度的增强,二次枝的长度、二次枝的基部粗、二次枝的枣吊数、茎比密度和茎水分含量均呈减小趋势,并且种子重和种子短轴长也均呈减小的趋势;(3)对沿干旱梯度分布的4个酸枣种群而言,叶性状的平均变异系数(33.70%)枝性状的平均变异系数(32.41%)种子性状的平均变异系数(9.07%),并且酸枣性状间存在很强的协变。结果表明酸枣的地上部分形态性状沿干旱梯度表现出很强的变异,推测在未来的气候变化下,酸枣将通过这种表型变异的有效组合来适应环境变化。  相似文献   

10.
Shifts in species'' traits across contrasting environments have the potential to influence ecosystem functioning. Plant communities on unusually harsh soils may have unique responses to environmental change, through the mediating role of functional plant traits. We conducted a field study comparing eight functional leaf traits of seventeen common species located on both serpentine and non-serpentine environments on Lesbos Island, in the eastern Mediterranean. We focused on species'' adaptive strategies across the two contrasting environments and investigated the effect of trait variation on the robustness of core ‘leaf economic’ relationships across local environmental variability. Our results showed that the same species followed a conservative strategy on serpentine substrates and an exploitative strategy on non-serpentine ones, consistent with the leaf economic spectrum predictions. Although considerable species-specific trait variability emerged, the single-trait responses across contrasting environments were generally consistent. However, multivariate-trait responses were diverse. Finally, we found that the strength of relationships between core ‘leaf economic’ traits altered across local environmental variability. Our results highlight the divergent trait evolution on serpentine and non-serpentine communities and reinforce other findings presenting species-specific responses to environmental variation.  相似文献   

11.
Quantifying patterns of variation and coordination of plant functional traits can help to understand the mechanisms underlying both invasiveness and adaptation of plants. Little is known about the coordinated variations of performance and functional traits of different organs in invasive plants, especially in response to their adaptation to environmental stressors. To identify the responses of the invasive species Solidago canadensis to drought, 180 individuals were randomly collected from 15 populations and 212 ramets were replanted in a greenhouse to investigate both the response and coordination between root and leaf functional traits. Drought significantly decreased plant growth and most of the root and leaf functional traits, that is, root length, surface area, volume and leaf size, number, and mass fraction, except for the root length ratio and root mass fraction. Phenotypic plasticity was higher in root traits than in leaf traits in response to drought, and populations did not differ significantly. The plasticity of most root functional traits, that is, root length (RL), root surface area (RSA), root volume (RV), and root mass fraction (RMF), were significantly positively correlated with biomass between control and drought. However, the opposite was found for leaf functional traits, that is, specific leaf area (SLA), leaf area ratio (LAR), and leaf mass fraction (LMF). Drought enhanced the relationship between root and leaf, that is, 26 pairwise root–leaf traits were significantly correlated under drought, while only 15 pairwise root–leaf traits were significantly correlated under control conditions. Significant correlations were found between biomass and all measured functional traits except for leaf size. RV, root length ratio, RMF, total area of leaves, and LMF responded differently to water availability. These responses enable S. canadensis to cope with drought conditions and may help to explain the reason of the vast ecological amplitude of this species.  相似文献   

12.
植物根、叶是对环境敏感性最高的器官,探究根叶功能性状之间的相互关系以及对环境因子的响应,有助于揭示植物对资源的利用状况及其对环境的适生策略。为探讨沿海植物的适应策略,该文以平潭岛砂质海岸草本植物为研究对象,由海及陆设置了3个距离梯度,选取6个叶功能性状和5个细根功能性状指标,分析海岸植物叶片与细根功能性状及其对土壤因子的响应。结果表明:(1)根、叶功能性状变异系数幅度在潮间带最小,在距高海潮线30~60 m的梯度上最大。单叶面积、叶磷含量、根平均直径、根组织密度、根磷含量随着由海到陆的距离增加呈上升趋势; 叶干物质含量、叶组织密度、比根长、比根面积呈下降趋势。(2)植物通过性状组合,在生长与防御间进行资源分配的权衡,表现在叶性状间、根性状间以及根-叶性状间具不同程度的相关性。其中,在地上-地下对应性状中,叶厚与根平均直径、叶磷含量与根磷含量呈极显著正相关; 而比叶面积与比根面积、比根长,叶组织密度与根组织密度均未表现出显著的相关性。(3)土壤因子对海岸植物功能性状变化的解释度为52.05%,其中土壤含盐量的影响最大,其次是土壤含水量、电导率、pH值。总体而言,在恶劣的海岸环境下,由海向陆土壤含盐量、电导率、含水量及pH值逐渐下降,整体为低磷高盐碱,植物表现为不同的生存策略:距海近的植物采取“叶片资源保守型、根系资源获取型”策略; 距海远的植物则采取“叶片资源获取型、根系资源保守型”。该研究结果为了解海岸草本植物对环境梯度变化的响应机制和适应性提供了一定参考价值,同时也利于通过分析土壤等环境特性按梯度筛选栽种适宜的物种,促进海岸植物的恢复和保护。  相似文献   

13.
  • Location and degree of protection of aerial buds are important functional traits in disturbance- or stress-prone environments since aerial buds ensure the development of new organs under favourable growing conditions. This study was carried out in a Brazilian Cerrado area under regeneration after long-term Pinus cultivation, where the trees were clear-cut in 2012 and the remaining material was burned in 2014.
  • After the fire treatment, several species resprouted from belowground organs and their aboveground organs were directly exposed to full sunlight. We collected 15 terminal branches with fully expanded leaves from three individuals of each of three Eugenia species to investigate if those with well-developed belowground organs invest in bark for aboveground bud protection. The samples were analysed using light and electron microscopy.
  • In addition to terminal and axillary buds, all species presented accessory buds, and the number varied according to the node analysed. None of the aerial buds were protected by bark, but all were well protected by cataphylls and densely pubescent leaf primordia. There were also inter- and intra-petiolar colleters that released a mucilaginous protein exudate. The distance between the shoot apical meristem and the outer surface was longer in the terminal bud than in axillary buds. The bud leaf primordia covering the shoot apical meristem had a thick cuticle, unicellular non-glandular trichomes that accumulate phenolic and lipophilic compounds, and secretory cavities.
  • Our study shows that all three Eugenia species studied here had highly protected aerial buds allocated from belowground organs. These morphological traits may improve the chances of the species' persistence in areas subjected to frost events, low relative humidity, high irradiance and harmful UV levels.
  相似文献   

14.
Examining the coordination of leaf and fine root traits not only aids a better understanding of plant ecological strategies from a whole‐plant perspective, but also helps improve the prediction of belowground properties from aboveground traits. The relationships between leaf and fine root traits have been extensively explored at global and regional scales, but remain unclear at local scales. Here, we measured six pairs of analogous leaf and fine root traits related to resource economy and organ size for coexisting dominant and subordinate vascular plants at three successional stages of temperate forest swamps in Lingfeng National Nature Reserve in the Greater Hinggan Mountains, NE China. Leaf and fine root traits related to resource acquisition (e.g., specific leaf area [SLA], leaf N, leaf P, root water content, and root P) decreased with succession. Overall, we found strong linear relationships between leaf dry matter content (LDMC) and root water content, and between leaf and root C, N, and P concentrations, but only weak correlations were observed between leaf area and root diameter, and between SLA and specific root length (SRL). The strong relationships between LDMC and root water content and between leaf and root C, N, and P held at the early and late stages, but disappeared at the middle stage. Besides, C and P of leaves were significantly correlated with those of roots for woody plants, while strong linkages existed between LDMC and root water content and between leaf N and root N for herbaceous species. These results provided evidence for the existence of strong coordination between leaf and root traits at the local scale. Meanwhile, the leaf–root trait relationships could be modulated by successional stage and growth form, indicating the complexity of coordination of aboveground and belowground traits at the local scale.  相似文献   

15.
  • Floral nectar is considered the most important floral reward for attracting pollinators. It contains large amounts of carbohydrates besides variable concentrations of amino acids and thus represents an important food source for many pollinators. Its nutrient content and composition can, however, strongly vary within and between plant species. The factors driving this variation in nectar quality are still largely unclear.
  • We investigated factors underlying interspecific variation in macronutrient composition of floral nectar in 34 different grassland plant species. Specifically, we tested for correlations between the phylogenetic relatedness and morphology of plants and the carbohydrate (C) and total amino acid (AA) composition and C:AA ratios of nectar.
  • We found that compositions of carbohydrates and (essential) amino acids as well as C:AA ratios in nectar varied significantly within and between plant species. They showed no clear phylogenetic signal. Moreover, variation in carbohydrate composition was related to family-specific structural characteristics and combinations of morphological traits. Plants with nectar-exposing flowers, bowl- or parabolic-shaped flowers, as often found in the Apiaceae and Asteraceae, had nectar with higher proportions of hexoses, indicating a selective pressure to decelerate evaporation by increasing nectar osmolality.
  • Our study suggests that variation in nectar nutrient composition is, among others, affected by family-specific combinations of morphological traits. However, even within species, variation in nectar quality is high. As nectar quality can strongly affect visitation patterns of pollinators and thus pollination success, this intra- and interspecific variation requires more studies to fully elucidate the underlying causes and the consequences for pollinator behaviour.
  相似文献   

16.
植物经济谱能够阐述维管植物在资源获取和储存之间的权衡策略, 为理解生态位分化和物种共存机制等提供科学依据。该研究通过对武夷山49种木本植物的单叶面积(ILA)、比叶面积(SLA)、叶碳含量(LCC)、叶氮含量(LNC)和叶磷含量(LPC)等5个叶片性状以及根组织密度(RTD)、比根长(SRL)、比根面积(SRA)、根碳含量(RCC)、根氮含量(RNC)和根磷含量(RPC)等6个细根性状进行测定, 探讨木本植物叶片与细根经济谱是否存在以及常绿和落叶物种间的植物经济谱差异。结果表明: 沿着性状贡献率相对较大的PC1轴, 能够定义出叶经济谱(LES)、根经济谱(RES)和整株植物经济谱(WPES)。大部分常绿物种分布在经济谱保守的一侧, 而大部分落叶物种聚集在获取的一侧。此外, 叶片PC1、细根PC1和整株植物PC1的两两得分之间均存在显著正相关关系, 常绿和落叶物种具有共同的异速指数, 但不存在共同的异速常数。这些结果揭示了亚热带物种叶片与细根的策略遵循着WPES的协调整合, 表明叶片、细根以及整株植物之间是采取协同变化的资源策略, 而分布于经济谱两端的常绿和落叶物种则是通过不同的方式来构建WPES。  相似文献   

17.
何芸雨  郭水良  王喆 《植物生态学报》2019,43(12):1021-1035
植物功能性状权衡关系反映了植物在资源获取与分配中采取的不同策略, 是近年来生态学研究的一个热点问题。该综述从研究范围、叶性状、器官和植物类群4个方面入手, 简要介绍植物功能性状关系研究在近10余年是如何在叶经济谱(LES)的基础上逐渐扩展和深入的。1)相关研究拓展到全球更多极端环境与特殊气候地区, 发现在不同的气候环境条件下, 植物叶片功能性状关系相对稳定, 植物种内的功能性状关系已被证实与LES相似; 2)功能性状网络从最初的6个经济性状扩展到叶片的分解、燃烧和水力等性状, 发现叶片的分解速率和可燃性均与叶片形态性状、养分含量等显著相关, 但叶片水力性状与经济性状的关系则取决于所研究的物种及生存环境的水分条件; 3)研究对象从植物叶片拓展到了根、茎、花、种子及植株整体, 叶片的比叶质量与茎的木质密度、种子大小相耦合, 但叶片形态性状与根和花的相关性状却无显著相关关系, 证明这些器官可能是独立进化的; 4) LES可以很好地解释特殊维管植物的生存适应策略: 入侵植物具有较高的资源利用效率和更快的相对生长速率, 在LES中处于“低投入-快速回报”的一端; 食虫植物的叶片特化为捕食器官, 光合作用及生长速率相对较低, 居于LES “高投入-缓慢回报”的另一端, 此外, 无论是最古老的种子植物苏铁属(Cycas)植物, 或是蕨类和变水植物(苔藓和地衣), 其功能性状关系都与LES大致相同。该文梳理了功能性状关系研究的进展脉络, 提出了一些建议, 期望为未来植物功能性状关系研究的选题和发展提供一些参考。  相似文献   

18.
19.
延河流域植物功能性状变异来源分析   总被引:6,自引:1,他引:5  
张莉  温仲明  苗连朋 《生态学报》2013,33(20):6543-6552
由于遗传背景对植物性状的影响,直接研究环境与植物性状的关系有一定的不确定性。因此,研究植物性状对环境变化的响应,必须明确遗传背景与环境对植物性状的相对影响,以排除遗传背景的作用。本研究以延河流域为研究区域,选取19个典型样点,调查了64种植物的6种功能性状,即比叶面积(SLA)、比根长(SRL)、叶片氮(LN)与磷含量(LP)、根的氮(RN)与磷含量(RP),并通过野外定位信息,从已有专题信息图中获取环境数据,采用方差分析和逐步回归的方法,分析了植物性状变异来源,研究了不同科属植物对环境变化的响应。结果表明:(1)不同气候条件下,植物的SLA、LN和RP性状存在显著差异,森林区植物SLA、RP较草原区植物偏低33.02%、19.94%,而LN则高于草原区植物19.33%;不同科属植物之间SLA、SRL、LN和RN存在显著差异,豆科植物具有较高的SLA、LN、RN,分别高出研究区平均值16.33%、65.23%、97.78%,而禾本科植物SRL具有最大值,高出平均值103.11%;(2)遗传背景差异是植物性状变异的首要决定因子,遗传背景对SRL、LN、RN变异的解释比例分别达到了27.86%、32.78%、42.70%,而LP、RP则受环境因子的影响更大,环境因子对LP、RP解释比例分别达到24%、15.58%;(3)豆科Leguminosae、禾本科Poaceae、菊科Asteraceae、蔷薇科Rosaceae植物性状的环境因子逐步线性回归模型,表明不同科属的植物对环境因子是否产生响应和响应的方式均不相同,豆科和禾本科植物对区域性气候条件较为敏感,而菊科和蔷薇科植物受地形因子和土壤含水量影响较大。  相似文献   

20.

Aim

Understanding how species' traits and environmental contexts relate to extinction risk is a critical priority for ecology and conservation biology. This study aims to identify and explore factors related to extinction risk between herbaceous and woody angiosperms to facilitate more effective conservation and management strategies and understand the interactions between environmental threats and species' traits.

Location

China.

Taxon

Angiosperms.

Methods

We obtained a large dataset including five traits, six extrinsic variables, and 796,118 occurrence records for 14,888 Chinese angiosperms. We assessed the phylogenetic signal and used phylogenetic generalized least squares regressions to explore relationships between extinction risk, plant traits, and extrinsic variables in woody and herbaceous angiosperms. We also used phylogenetic path analysis to evaluate causal relationships among traits, climate variables, and extinction risk of different growth forms.

Results

The phylogenetic signal of extinction risk differed among woody and herbaceous species. Angiosperm extinction risk was mainly affected by growth form, altitude, mean annual temperature, normalized difference vegetation index, and precipitation change from 1901 to 2020. Woody species' extinction risk was strongly affected by height and precipitation, whereas extinction risk for herbaceous species was mainly affected by mean annual temperature rather than plant traits.

Main conclusions

Woody species were more likely to have higher extinction risks than herbaceous species under climate change and extinction threat levels varied with both plant traits and extrinsic variables. The relationships we uncovered may help identify and protect threatened plant species and the ecosystems that rely on them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号