首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nachman RJ  Strey A  Zubrzak P  Zdarek J 《Peptides》2006,27(3):527-533
Five native pyrokinin-like peptides (Neb-PK-1, Neb-PK-2, Neb-PVK-1, [L9]Neb-PVK-2, [I9]Neb-PVK-2) identified in the neuropeptidome of the flesh fly Neobellieria bullata were compared for their quantitative and/or qualitative effects on puparium formation (pupariation). In a standard pupariation bioassay, both Neb-PVK-1 and [I9]Neb-PVK-2 proved inactive, whereas [L9]Neb-PVK-2 demonstrated only weak activity. In contrast, both Neb-PK-1 and Neb-PK-2 demonstrated potent threshold doses, with Neb-PK-2 about 10-fold more active than Neb-PK-1. Analysis of neuromuscular activity during pupariation using a tensiometric technique demonstrates that the two native Neb-PKs accelerate the onset of immobilization and cuticular shrinkage more than motor programs associated with retraction of the anterior segments and longitudinal body contraction. It was further determined that the sensitivity of various components of the pupariation process to these peptides decreases in the following order: immobilization>cuticular shrinkage>motor program for anterior retraction>motor program for longitudinal contraction congruent to tanning of cuticle of the newly formed puparium. A paradoxical situation was observed whereby the motor programs of pupariation are temporally dissociated from actual morphogenesis of the puparium. The tensiometric data suggest that the most likely candidate for a primary pupariation factor is Neb-PK-2, rather than Neb-PK-1.  相似文献   

2.
A peptidomics approach was applied to determine the peptides in the larval central nervous system of the grey flesh fly, Neobellieria bullata. Fractions obtained by high performance liquid chromatography were analysed by MALDI-TOF and ESI-Q-TOF mass spectrometry. This provided biochemical evidence for the presence of 18 neuropeptides, 11 of which were novel Neobellieria peptides. Most prominently present were the FMRFamide-related peptides: 7 FMRFamides, 1 FIRFamide, and Neb-myosuppressin. The three putative capa-gene products Neb-pyrokinin and the periviscerokinins Neb-PVK-1 and -2 were detected, as well as another pyrokinin. This Neb-PK-2 was also present in the ring gland along with corazonin, Neb-myosuppressin, and Neb-AKH-GK, an intermediate processing product of the adipokinetic hormone. Furthermore, the central nervous system contained Neb-LFamide, proctolin, and FDFHTVamide, designated as Neb-TVamide. With this study, we considerably increased our knowledge of the neuropeptidome of the pest fly N. bullata, which is an important insect model for physiological research.  相似文献   

3.
The database of the Drosophila Genome Project contains the sequences of two genes, CG8784 and CG8795, predicted to code for two structurally related G protein-coupled receptors. We have cloned these genes and expressed their coding parts in Chinese hamster ovary cells. We found that both receptors can be activated by low concentrations of the Drosophila neuropeptide pyrokinin-2 (CG8784, EC(50) for pyrokinin-2, 1x10(-9)M; CG8795, EC(50) for pyrokinin-2, 5 x 10(-10)M). The precise role of Drosophila pyrokinin-2 (SVPFKPRLamide) in Drosophila is unknown, but in other insects, pyrokinins have diverse myotropic actions and are also initiating sex pheromone biosynthesis and embryonic diapause. Gene silencing, using the RNA-mediated interference technique, showed that CG8784 gene silencing caused lethality in embryos, whereas CG8795 gene silencing resulted in strongly reduced viability for both embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors to be identified.  相似文献   

4.
We cloned the cDNA of three evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae and functionally expressed them in Chinese hamster ovary cells. One receptor, Ang-Capa-R, was only activated by the two Anopheles capa neuropeptides Ang-capa-1 (GPTVGLFAFPRVamide) and Ang-capa-2 (pQGLVPFPRVamide) with EC(50) values of 8.6x10(-9)M and 3.3x10(-9)M, respectively, but not by any other known mosquito neuropeptide. The second receptor, Ang-PK-1-R, was selectively activated by the Anopheles pyrokinin-1 peptides Ang-PK-1-1 (AGGTGANSAMWFGPRLamide) and Ang-PK-1-2 (AAAMWFGPRLamide) with EC(50) values of 3.3x10(-8)M and 2.5x10(-8)M, respectively, but not by mosquito capa or pyrokinin-2 peptides. For the third receptor, Ang-PK-2-R, the most potent ligands were the pyrokinin-2 peptides Ang-PK-2-1 (DSVGENHQRPPFAPRLamide) and Ang-PK-2-2 (NLPFSPRLamide) with EC(50) values of 5.2x10(-9)M and 6.4x10(-9)M, respectively. However, this receptor could also be activated by the two pyrokinins-1, albeit with lower potency (EC(50): 2-5x10(-8)M). Because Ang-capa-1 and -2 and Ang-PK-1-1 are located on one preprohormone and the other peptides on another prohormone, these results imply a considerable crosstalk between the capa, pyrokinin-1 and pyrokinin-2 systems. Gene structure and phylogenetic tree analyses showed that Ang-Capa-R was the orthologue of the Drosophila capa receptor CG14575, Ang-PK-1-R the orthologue of the Drosophila pyrokinin-1 receptor CG9918, and Ang-PK-2-R the orthologue of the Drosophila pyrokinin-2 receptors CG8784 and CG8795. This is the first report on the functional characterization and crosstalk properties of capa and pyrokinin receptors in mosquitoes.  相似文献   

5.
Antimicrobial peptides (AMPs) play an important role in the innate immunity of insects. In Drosophila 17 additional immune induced molecules (DIMs) were found in the haemolymph of adult flies upon septic injury. Previous studies using MALDI mass spectrometry combined with Edman degradation, detected AMPs and DIMs of a predominantly large size. By means of 2D-nanoLC ESI MS/MS, 43 DIMs were identified in this study from the haemolymph of Drosophila third instar larvae 12h after challenge with a mixture of Micrococcus luteus and Escherichia coli. Most peptides were derived from known AMP or DIM precursors, but only four peptides were purified and identified before. The majority of the peptides that we detected were smaller in size. Interestingly, two previously unknown peptide precursors were found and hereby related to immune defense. These include CG7738 and CG32185. Many of the identified peptides are post-translationally modified by an N-terminal pyroglutamic acid and/or a C-terminal amide. Haemolymph of control larvae was treated in the same way and revealed only one peptide.  相似文献   

6.
ABSTRACT. This artificial selection study with the flesh fly, Sarcophaga bullata Parker, tested the hypothesis that phenotypic variability in the length of the larval stage (under non-diapause conditions) is largely a consequence of genetic variability. Selection for late pupariation resulted in a line that pupariated significantly later and also developed more slowly during other stages of the life cycle. In a diapause-inducing environment, the selected line pupariated later, showed a higher incidence of pupal diapause, and remained in diapause longer than the unselected line. This is the first experimental evidence in S.bullata to show that diapause incidence and duration are related. The relationship between developmental rate and diapause traits may stem from the pleiotropic effects of genes associated with late pupariation, or from one or more genes associated with late pupariation being closely linked to genes that affect diapause.  相似文献   

7.
Peptides from the pyrokinin/PBAN family and some structurally related compounds identified in various arthropods were tested for acceleration of puparial contraction in flesh fly larvae. Modifications of behavioural patterns of pupariation were further studied for the active compounds using a behavioural analysis based on the recording of changes in tension of the cuticle. Nine peptides belonging to the pyrokinin/PBAN family (Lem-PK, Pea-PK-5, Lom-PK II, Hez-PBAN, Bom-DH-I), identified in five different insect species, two pyrokinin peptides derived from the genome of Drosophila melanogaster (capa-3, and hugin), and two pyrokinins identified from the white shrimp Penaeus vannamei were very active in the pupariation assay, with threshold doses within the range of 0.1-5.0 pmol larva(-1). High activity was also detected for a related peptide ETH1 from Drosophila. All of these peptides share a C-terminal PRLamide, which is essential and sufficient for the activity. Interestingly, two other structurally related peptides from Drosophila--ETH2 and capa-1--which feature conservative changes (Ile and Val, respectively) at the C-terminal Leu position, were inactive within a physiological range of concentrations. It is clear that the receptor mediating the acceleration of puparial contraction behaviour is sensitive to the introduction of greater steric bulk at the C-terminal Leu position. The peptides that accelerated pupariation showed very similar patterns of muscular and cuticular activity.  相似文献   

8.
Moth sex-pheromone biosynthesis follows a circadian cycle, which is cued by the release of the neurohormone pheromone biosynthesis activating neuropeptide (PBAN) to the hemolymph. PBAN binds to a G protein-coupled receptor (GPCR), in pheromone glands, (PG) initially identified by us in Helicoverpa zea moths (HezPBAN-R). In this study, the sequences of the seven transmembrane helices of HezPBAN-R were identified, built, packed and oriented correctly after multiple sequence alignment of the HezPBAN-R and several other GPCRs using the X-ray structure of rhodopsin as a template. Molecular dynamics simulations were run on three different beta-turn types of the C-terminal hexapeptide of PBAN and the results clustered into 12 structurally distinct groups. The lowest energy conformation from each group was used for computer-simulated docking with the model of the HezPBAN-R. Highest scoring complexes were examined and putative binding sites were identified. Experimental studies, using in vitro PG, revealed lower levels of pheromonotropic activity when challenged with pyrokinin-like peptides than with HezPBAN as ligand. Thus, the Drosophila melanogaster pyrokinin-1 receptor (CG9918) was chosen to create chimera receptors by exchanging between the three extracellular loops of the HezPBAN-R and the CG9918 for in silico mutagenesis experiments. The predicted docking model was validated with experimental data obtained from expressed chimera receptors in Sf9 cells.  相似文献   

9.
The action of venom from the ectoparasitic wasp, Nasonia vitripennis, was monitored by examining alterations in patterned muscular movements characteristic of pupariation and eclosion behavior in the flesh fly, Sarcophaga bullata. Venom injected into larvae prior to pupariation caused a dose-dependent delay in pupariation. Eventually, such larvae did pupariate, but puparia were abnormally formed. Barographic records revealed that all elements of pupariation behavior were present in venom-injected larvae, but pupariation behavior was not well synchronized with tanning, thus implying that the venom caused disruption in the temporal organization of central motor programs. When larvae were ligated and injected with venom posterior to the ligature, no response was evident in the posterior region, suggesting that the venom does not directly stimulate muscles or neuromuscular junctions. Injection of exogenous ecdysteroid into venom-injected larvae restored some elements of pupariation behavior, consistent with ecdysone's role in stimulating the release of anterior retraction factor and puparium tanning factor, two factors that are released from the CNS to regulate pupariation. When the venom was injected into newly emerged imagoes, the duration of extrication behavior was shortened, whereas all phases of post-eclosion behavior were lengthened. These observations imply that the venom affects CNS centers that regulate the muscular systems engaged in extrication and post-eclosion behavior.  相似文献   

10.
11.
Summary The late larvae of Drosophila gibberosa Patterson and Mainland choose different pupariation sites than the larvae of Drosophila melanogaster Meigen. Since the larvae of D. gibberosa do not attach themselves to the substratum, the salivary glands contain only a small amount of the glue proteins before pupariation. Proteins comprising the salivary gland secretions of late larvae of these two species were compared and found to be qualitatively quite different. Only five polypeptides with the same molecular masses were identified in both species. The rate of protein synthesis in the salivary glands of D. gibberosa continued to increase through the late larval stage and pupariation. As a consequence, the total amount of protein contained in the salivary glands also continued to increase after pupariation. To demonstrate temporal changes in protein synthesis from 48 h before pupariation to 28 h after pupariation, newly synthesized polypeptides were pulse labeled by culturing salivary glands in vitro. The patterns of polypeptide synthesis fell into four major groups depending upon whether the synthesis of a protein stopped shortly after pupariation, stopped during late pupariation, increased at pupariation, or was initiated after pupariation. Changing patterns of protein synthesis are correlated with the known changes in gene puffing during this developmental period.  相似文献   

12.
The induction of the Dopa decarboxylase gene (Ddc) in the epidermis of Drosophila at pupariation is a receptor-mediated response to the steroid molting hormone, ecdysone. Activity is also dependent on the Broad-Complex (BR-C), an early ecdysone response gene that functions during metamorphosis. BR-C encodes a family of zinc-finger protein isoforms, BR-C(Z1-Z4). Genetic experiments have shown that the Z2 isoform is required for epidermal Ddc to reach maximum expression at pupariation. In this paper, we report that BR-C regulates Ddc expression at two different developmental stages through two different cis-acting regions. At pupariation, BR-C acts synergistically with the ecdysone receptor to up-regulate Ddc. DNase I foot printing has identified four binding sites of the predominant Z2 isoform within a distal regulatory element that is required for maximal Ddc activity. The sites share a conserved core sequence with a set of BR-C sites that had been mapped previously to within the first Ddc intron. Using variously deleted Ddc genomic regions to drive reporter gene expression in transgenic organisms, we show that the intronic binding sites are required for Ddc expression at eclosion. At both pupariation and eclosion, BR-C releases Ddc from an active silencing mechanism, operating through two distinct cis-acting regions of the Ddc genomic domain at these stages. Transgenes, bearing a Ddc fragment from which one of the cis-acting silencers has been deleted, exhibit beta-galactosidase reporter activity in the epidermal cells prior to the appearance of endogenous DDC. Our finding that BR-C is required for Ddc activation at eclosion is the first evidence to suggest that this important regulator of the early metamorphic events, also regulates target gene expression at the end of metamorphosis.  相似文献   

13.
14.
T antigen (Galbeta1-3GalNAcalpha1-Ser/Thr), the well-known tumor-associated antigen, is a core 1 mucin-type O-glycan structure that is synthesized by core 1 beta1,3-galactosyltransferase (C1beta3GalT), which transfers Gal from UDP-Gal to Tn antigen (GalNAcalpha1-Ser/Thr). Three putative C1beta3GalTs have been identified in Drosophila. However, although all three are expressed in embryos, their roles during embryogenesis have not yet been clarified. In this study, we used P-element inserted mutants to show that CG9520, one of the three putative C1beta3GalTs, synthesizes T antigen expressed on the central nervous system (CNS) during embryogenesis. We also found that T antigen was expressed on a subset of the embryonic hemocytes. CG9520 mutant embryos showed the loss of T antigens on the CNS and on a subset of hemocytes. Then, the loss of T antigens was rescued by precise excision of the P-element inserted into the CG9520 gene. Our data demonstrate that T antigens expressed on the CNS and on a subset of hemocytes are synthesized by CG9520 in the Drosophila embryo. In addition, we found that the number of circulating hemocytes was reduced in third instar larvae of CG9520 mutant. We, therefore, named the CG9520 gene Drosophila core 1 beta1,3-galactosyltransferase 1 because it is responsible for the synthesis and function of T antigen in vivo.  相似文献   

15.
Diapause hormone (DH) effectively terminated pupal diapause in Helicoverpa zea. This effect was temperature-dependent, with an optimum of 21 degrees C. The dose-response curve indicated an ED50 of DH for diapause termination of approximately 100 pmol. The core sequence and essential amino acids were determined by bioassays using modified and truncated DH analogs. A C-terminal hepta-peptide, LWFGPRLa, was the core sequence required for diapause termination. Activity was lost when Alanine was substituted for any of the amino acids in the hepta-peptide, with the exception of Glycine. A fragment series of analogs suggested that the amide and Arginine were the most important components needed for terminating diapause. Leucine, Tryptophan, and Phenylalanine at the N-terminus of the hepta-peptide were also critical for activity. The C-terminal Leucine was less important: deletion resulted in decreased activity, although it could not be substituted by Alanine. The fact that a portion of the DH sequence is similar to the pyrokinin that accelerates fly pupariation prompted us to also evaluate the capability of DH to accelerate development in the flesh fly, Sarcophaga bullata. The threshold dose of DH essential to accelerate fly pupariation was 5 pmol for immobilization/retraction and longitudinal contraction and 10 pmol for tanning, approximately one or two orders of magnitude lower than the effective dose required for diapause termination in H. zea. Tensiometric measurements revealed that DH affected neuromuscular patterns of pupariation behavior and associated cuticular changes in a manner similar to that of the fly pyrokinins and their analogs.  相似文献   

16.
The calpains are Ca(2+)-activated cysteine proteases whose biochemical properties have been extensively characterized in vitro. Less is known, however, about the physiological role of calpains. In this respect, Drosophila melanogaster is a useful experimental organism to study calpain activity and regulation in vivo. The sequencing of the fly genome has been recently completed and a novel calpain homologue has been identified in the CG3692 gene product. We embarked on the cloning and characterization of this putative novel calpain. We demonstrate that the actual calpain is different from the predicted protein and we provide experimental evidence for the correction of the genomic annotation. This novel protein, Calpain C, must be catalytically inactive, having mutated active site residues but is otherwise structurally similar to the other known fly calpains. Moreover, we analysed Calpain C RNA expression during Drosophila development by RT-PCR and RNA in situ hybridization, which revealed strong expression in the salivary glands.  相似文献   

17.
Receptorguanylate cyclases (rGCs) modulate diverse physiological processes including mammalian cardiovascular function and insect eclosion. The Drosophila genome encodes several receptor and receptor-like GCs, but no ligand for any Drosophila rGC has yet been identified. By screening peptide libraries in Drosophila S2 cells, the Drosophila peptide NPLP1-VQQ (NLGALKSSPVHGVQQ) was shown to be a ligand for the rGC, Gyc76C (CG42636, previously CG8742, l(3)76BDl, DrGC-1). In the adult fly, expression of Gyc76C is highest in immune and stress-sensing epithelial tissues, including Malpighian tubules and midgut; and NPLP1-VQQ stimulates fluid transport and increases cGMP content in tubules. cGMP signaling is known to modulate the activity of the IMD innate immune pathway in tubules via activation and nuclear translocation of the NF-kB orthologue, Relish, resulting in increased anti-microbial peptide (AMP) gene expression; and so NPLP1-VQQ might act in immune/stress responses. Indeed, NPLP1-VQQ induces nuclear translocation of Relish in intact tubules and increases expression of the anti-microbial peptide gene, diptericin. Targeted Gyc76C RNAi to tubule principal cells inhibited both NPLP1-VQQ-induced Relish translocation and diptericin expression. Relish translocation and increased AMP gene expression also occurs in tubules in response to dietary salt stress. Gyc76C also modulates organismal survival to salt stress - ablation of Gyc76C expression in only tubule principal cells prevents Relish translocation, reduces diptericin expression, and reduces organismal survival in response to salt stress. Thus, the principal-cell localized NPLP1-VQQ/Gyc76C cGMP pathway acts to signal environmental (salt) stress to the whole organism.  相似文献   

18.
In invertebrates, the phenolamines, tyramine and octopamine, mediate many functional roles usually associated with the catecholamines, noradrenaline and adrenaline, in vertebrates. The α‐ and β‐adrenergic classes of insect octopamine receptor are better activated by octopamine than tyramine. Similarly, the Tyramine 1 subgroup of receptors (or Octopamine/Tyramine receptors) are better activated by tyramine than octopamine. However, recently, a new Tyramine 2 subgroup of receptors was identified, which appears to be activated highly preferentially by tyramine. We examined immunocytochemically the ability of CG7431, the founding member of this subgroup from Drosophila melanogaster, to be internalized in transfected Chinese hamster ovary (CHO) cells by different agonists. It was only internalized after activation by tyramine. Conversely, the structurally related receptor, CG16766, was internalized by a number of biogenic amines, including octopamine, dopamine, noradrenaline, adrenaline, which also were able to elevate cyclic AMP levels. Studies with synthetic agonists and antagonists confirm that CG16766 has a different pharmacological profile to that of CG7431. Species orthologues of CG16766 were only found in Drosophila species, whereas orthologues of CG7431 could be identified in the genomes of a number of insect species. We propose that CG16766 represents a new group of tyramine receptors, which we have designated the Tyramine 3 receptors.  相似文献   

19.
The Drosophila Genome Project website (www.flybase.org) contains the sequence of an annotated gene (CG6111) expected to code for a G protein-coupled receptor. We have cloned this receptor and found that its gene was not correctly predicted, because an annotated neighbouring gene (CG14547) was also part of the receptor gene. DNA corresponding to the corrected gene CG6111 was expressed in Chinese hamster ovary cells, where it was found to code for a receptor that could be activated by low concentrations of crustacean cardioactive peptide, which is a neuropeptide also known to occur in Drosophila and other insects (EC(50), 5.4 x 10(-10)M). Other known Drosophila neuropeptides, such as adipokinetic hormone, did not activate the receptor. The receptor is expressed in all developmental stages from Drosophila, but only very weakly in larvae. In adult flies, the receptor is mainly expressed in the head. Furthermore, we identified a gene sequence in the genomic database from the malaria mosquito Anopheles gambiae that very likely codes for a crustacean cardioactive peptide receptor.  相似文献   

20.
In this study, we analyzed the hemolymph proteome of Drosophila third instar larvae, which were induced with a suspension of Gram-positive bacteria or yeast. Profiling of the hemolymph proteins of infected versus non-infected larvae was performed by two-dimensional difference gel electrophoresis. Infection with Micrococcus luteus or Saccharomyces cerevisiae induced, respectively, 20 and 19 differential protein spots. The majority of the spots are specifically regulated by one pathogen, whereas only a few spots correspond to proteins altered in all cases of challenging (including after challenge with lipopolysaccharides). All of the upregulated proteins can be assigned to specific aspects of the immune system, as they did not increase in the hemolymph of sterile pricked larvae. Next to known immune proteins, unannotated proteins were identified such as CG4306 protein, which has homologues with unknown function in all metazoan genome databases available today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号