首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Moore KA  Lemischka IR 《Cell》2004,118(2):139-140
Interaction of hematopoietic stem cells (HSCs) with their particular microenvironment, or niche, is critical for adult hematopoiesis in the bone marrow (BM). Arai et al. (this issue of Cell) demonstrate that HSCs that express the receptor tyrosine kinase Tie2 are quiescent. Ang-1, the ligand for Tie2, enhanced the ability of HSCs to become quiescent and also induced their adhesion to bone, protecting them from stresses that suppress hematopoiesis. These data suggest that the Ang-1/Tie2 signaling pathway plays a crucial role in the maintenance of HSCs in a quiescent state in the BM niche.  相似文献   

2.
The quiescent state is thought to be an indispensable property for themaintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with theirparticular microenvironments, known as the stem cell niches, is critical for cell cycleregulation of HSCs. Monitoring of the quiescence of HSCs using by a new stem cellmarker, Side Population (SP), revealed that the cell cycle status of HSCs is dynamicallycontrolled by the microenvironments. We have recently revealed a molecularmechanism in which cell cycle of HSCs is regulated by the niche. HSCs expressing thereceptor tyrosine kinase Tie2 are adhere to osteoblasts (OBs) in the BM niche. Theinteraction of Tie2 and its ligand Angiopoietin-1 (Ang-1) leads to tight adhesion ofHSCs to stromal cells, resulting in maintainance of long-term repopulating activity ofHSCs. Thus, Tie2/Ang-1 signaling pathway plays a critical role in the maintenance ofHSCs in a quiescent state in the BM niche. The understanding of cell cycle control instem cells leads to development of new strategy for progress in regenerative medicine.  相似文献   

3.
4.
Tsuda L  Nagaraj R  Zipursky SL  Banerjee U 《Cell》2002,109(5):625-637
Stem cells within the bone marrow (BM) exist in a quiescent state or are instructed to differentiate and mobilize to circulation following specific signals. Matrix metalloproteinase-9 (MMP-9), induced in BM cells, releases soluble Kit-ligand (sKitL), permitting the transfer of endothelial and hematopoietic stem cells (HSCs) from the quiescent to proliferative niche. BM ablation induces SDF-1, which upregulates MMP-9 expression, and causes shedding of sKitL and recruitment of c-Kit+ stem/progenitors. In MMP-9-/- mice, release of sKitL and HSC motility are impaired, resulting in failure of hematopoietic recovery and increased mortality, while exogenous sKitL restores hematopoiesis and survival after BM ablation. Release of sKitL by MMP-9 enables BM repopulating cells to translocate to a permissive vascular niche favoring differentiation and reconstitution of the stem/progenitor cell pool.  相似文献   

5.
Maintenance of hematopoietic stem cells (HSCs) depends on interaction with their niche. Here we show that the long-term (LT)-HSCs expressing the thrombopoietin (THPO) receptor, MPL, are a quiescent population in adult bone marrow (BM) and are closely associated with THPO-producing osteoblastic cells. THPO/MPL signaling upregulated beta1-integrin and cyclin-dependent kinase inhibitors in HSCs. Furthermore, inhibition and stimulation of THPO/MPL pathway by treatments with anti-MPL neutralizing antibody, AMM2, and with THPO showed reciprocal regulation of quiescence of LT-HSC. AMM2 treatment reduced the number of quiescent LT-HSCs and allowed exogenous HSC engraftment without irradiation. By contrast, exogenous THPO transiently increased quiescent HSC population and subsequently induced HSC proliferation in vivo. Altogether, these observations suggest that THPO/MPL signaling plays a critical role of LT-HSC regulation in the osteoblastic niche.  相似文献   

6.
Hematopoietic stem cells (HSCs) reside and self-renew in the bone marrow (BM) niche. Overall, the signaling that regulates stem cell dormancy in the HSC niche remains controversial. Here, we demonstrate that TGF-β type II receptor-deficient HSCs show low-level Smad activation and impaired long-term repopulating activity, underlining the critical role of TGF-β/Smad signaling in HSC maintenance. TGF-β is produced as a latent form by a variety of cells, so we searched for those that express activator molecules for latent TGF-β. Nonmyelinating Schwann cells in BM proved responsible for activation. These glial cells ensheathed autonomic nerves, expressed HSC niche factor genes, and were in contact with a substantial proportion of HSCs. Autonomic nerve denervation reduced the number of these active TGF-β-producing cells and led to rapid loss of HSCs from BM. We propose that glial cells are components of a BM niche and maintain HSC hibernation by regulating activation of latent TGF-β.  相似文献   

7.
8.
Cell-cell and cell-extracellular matrix interactions between hematopoietic stem cells (HSCs) and their niches are critical for the maintenance of stem cell properties. Here, it is demonstrated that a cell adhesion molecule, N-cadherin, is expressed in hematopoietic stem/progenitor cells (HSPCs) and plays a critical role in the regulation of HSPC engraftment. Furthermore, overexpression of N-cadherin in HSCs promoted quiescence and preserved HSC activity during serial bone marrow (BM) transplantation (BMT). Inhibition of N-cadherin by the transduction of N-cadherin short hairpin (sh) RNA (shN-cad) reduced the lodgment of donor HSCs to the endosteal surface, resulting in a significant reduction in long-term engraftment. shN-cad-transduced cells were maintained in the spleen for six months after BMT, indicating that N-cadherin expression in HSCs is specifically required in the BM. These findings suggest that N-cadherin-mediated cell adhesion is functionally essential for the regulation of HSPC activities in the BM niche.  相似文献   

9.
Suda T  Arai F 《Cell》2008,132(5):729-730
There is much interest in understanding the signals in the bone marrow niche that keep hematopoietic stem cells (HSCs) in a quiescent state. In the current issue of Cell Stem Cell, Fleming et al. (2008) report that blocking Wnt signaling in the niche increases the number of proliferating HSCs and reduces their ability to reconstitute the hematopoietic system of irradiated recipient mice. These findings show that Wnt/beta-catenin activity is crucial for the maintenance of HSC quiescence in the bone marrow niche.  相似文献   

10.
Hematopoietic homeostasis depends on the maintenance of hematopoietic stem cells (HSCs), which are regulated within a specialized bone marrow (BM) niche. When HSC sense external stimuli, their adhesion status may be critical for determining HSC cell fate. The cell surface molecule, integrin αvβ3, is activated through HSC adhesion to extracellular matrix and niche cells. Integrin β3 signaling maintains HSCs within the niche. Here, we showed the synergistic negative regulation of the pro‐inflammatory cytokine interferon‐γ (IFNγ) and β3 integrin signaling in murine HSC function by a novel definitive phenotyping of HSCs. Integrin αvβ3 suppressed HSC function in the presence of IFNγ and impaired integrin β3 signaling mitigated IFNγ‐dependent negative action on HSCs. During IFNγ stimulation, integrin β3 signaling enhanced STAT1‐mediated gene expression via serine phosphorylation. These findings show that integrin β3 signaling intensifies the suppressive effect of IFNγ on HSCs, which indicates that cell adhesion via integrin αvβ3 within the BM niche acts as a context‐dependent signal modulator to regulate the HSC function under both steady‐state and inflammatory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号