首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 809 毫秒
1.
It is shown that the lottery competition model permits coexistence in a stochastic environment, but not in a constant environment. Conditions for coexistence and competitive exclusion are determined. Analysis of these conditions shows that the essential requirements for coexistence are overlapping generations and fluctuating birth rates which ensure that each species has periods when it is increasing. It is found that a species may persist provided only that it is favored sufficiently by the environment during favorable periods independently of the extent to which the other species is favored during its favorable periods.Coexistence is defined in terms of the stochastic boundedness criterion for species persistence. Using the lottery model as an example this criterion is justified and compared with other persistence criteria. Properties of the stationary distribution of population density are determined for an interesting limiting case of the lottery model and these are related to stochastic boundedness. An attempt is then made to relate stochastic boundedness for infinite population models to the behavior of finite population models.  相似文献   

2.
Understanding under what conditions interacting populations, whether they be plants, animals, or viral particles, coexist is a question of theoretical and practical importance in population biology. Both biotic interactions and environmental fluctuations are key factors that can facilitate or disrupt coexistence. To better understand this interplay between these deterministic and stochastic forces, we develop a mathematical theory extending the nonlinear theory of permanence for deterministic systems to stochastic difference and differential equations. Our condition for coexistence requires that there is a fixed set of weights associated with the interacting populations and this weighted combination of populations’ invasion rates is positive for any (ergodic) stationary distribution associated with a subcollection of populations. Here, an invasion rate corresponds to an average per-capita growth rate along a stationary distribution. When this condition holds and there is sufficient noise in the system, we show that the populations approach a unique positive stationary distribution. Moreover, we show that our coexistence criterion is robust to small perturbations of the model functions. Using this theory, we illustrate that (i) environmental noise enhances or inhibits coexistence in communities with rock-paper-scissor dynamics depending on correlations between interspecific demographic rates, (ii) stochastic variation in mortality rates has no effect on the coexistence criteria for discrete-time Lotka–Volterra communities, and (iii) random forcing can promote genetic diversity in the presence of exploitative interactions.
One day is fine, the next is black.—The Clash  相似文献   

3.
A stochastic model is developed for competition among organisms living in a patchy and varying environment. The model is designed to be suitable for species with sedentary adults and widely dispersing larvae or propagules, and applies best to marine systems but may also be adequate for some terrestrial systems. Three kinds of environmental variation are incorporated simultaneously in the model. These are pure spatial variation, pure temporal variation, and the space × time interaction. All three kinds of variation can promote coexistence, and when variation is restricted to immigration rates, all three kinds act very similarly. Moreover, for long-lived organisms their action is nearly identical, and their effects, when present together, combine equivalently. For short-lived organisms, however, pure temporal variation is a less effective promoter of coexistence. Variation in death rates acts quite differently from variation in birth rates for it may demote coexistence in some circumstances, while promoting coexistence in other circumstances. Furthermore, pure spatial variation in death rates has quite different effects than other kinds of death-rate variation. In addition to conditions for coexistence, information is given on population fluctuations, convergence to stationary distributions, and asymptotic distributions for long-lived organisms. While the model is presented as an ecological model, a genetical interpretation is also possible. This leads to new suggested mechanisms for the maintenance of polymorphisms in populations.  相似文献   

4.
Population size dependence, competitive coexistence and habitat destruction   总被引:3,自引:0,他引:3  
1. Spatial dynamics can lead to coexistence of competing species even with strong asymmetric competition under the assumption that the inferior competitor is a better colonizer given equal rates of extinction. Patterns of habitat fragmentation may alter competitive coexistence under this assumption.
2. Numerical models were developed to test for the previously ignored effect of population size on competitive exclusion and on extinction rates for coexistence of competing species. These models neglect spatial arrangement.
3. Cellular automata were developed to test the effect of population size on competitive coexistence of two species, given that the inferior competitor is a better colonizer. The cellular automata in the present study were stochastic in that they were based upon colonization and extinction probabilities rather than deterministic rules.
4. The effect of population size on competitive exclusion at the local scale was found to have little consequence for the coexistence of competitors at the metapopulation (or landscape) scale. In contrast, population size effects on extinction at the local scale led to much reduced landscape scale coexistence compared to simulations not including localized population size effects on extinction, especially in the cellular automata models. Spatially explicit dynamics of the cellular automata vs. deterministic rates of the numerical model resulted in decreased survival of both species. One important finding is that superior competitors that are widespread can become extinct before less common inferior competitors because of limited colonization.
5. These results suggest that population size–extinction relationships may play a large role in competitive coexistence. These results and differences are used in a model structure to help reconcile previous spatially explicit studies which provided apparently different results concerning coexistence of competing species.  相似文献   

5.
The contribution of deterministic and stochastic processes to species coexistence is widely debated. With the introduction of powerful statistical techniques, we can now better characterise different sources of uncertainty when quantifying niche differentiation. The theoretical literature on the effect of stochasticity on coexistence, however, is often ignored by field ecologists because of its technical nature and difficulties in its application. In this review, we examine how different sources of variability in population dynamics contribute to coexistence. Unfortunately, few general rules emerge among the different models that have been studied to date. Nonetheless, we believe that a greater understanding is possible, based on the integration of coexistence and population extinction risk theories. There are two conditions for coexistence in the presence of environmental and demographic variability: (1) the average per capita growth rates of all coexisting species must be positive when at low densities, and (2) these growth rates must be strong enough to overcome negative random events potentially pushing densities to extinction. We propose that critical tests for species coexistence must account for niche differentiation arising from this variability and should be based explicitly on notions of stability and ecological drift.  相似文献   

6.
We are interested in the long time behavior of a two-type density-dependent biological population conditioned on non-extinction, in both cases of competition or weak cooperation between the two species. This population is described by a stochastic Lotka–Volterra system, obtained as limit of renormalized interacting birth and death processes. The weak cooperation assumption allows the system not to blow up. We study the existence and uniqueness of a quasi-stationary distribution, that is convergence to equilibrium conditioned on non-extinction. To this aim we generalize in two-dimensions spectral tools developed for one-dimensional generalized Feller diffusion processes. The existence proof of a quasi-stationary distribution is reduced to the one for a d-dimensional Kolmogorov diffusion process under a symmetry assumption. The symmetry we need is satisfied under a local balance condition relying the ecological rates. A novelty is the outlined relation between the uniqueness of the quasi-stationary distribution and the ultracontractivity of the killed semi-group. By a comparison between the killing rates for the populations of each type and the one of the global population, we show that the quasi-stationary distribution can be either supported by individuals of one (the strongest one) type or supported by individuals of the two types. We thus highlight two different long time behaviors depending on the parameters of the model: either the model exhibits an intermediary time scale for which only one type (the dominant trait) is surviving, or there is a positive probability to have coexistence of the two species.  相似文献   

7.
The lottery model of competition between species in a variable environmental has been influential in understanding how coexistence may result from interactions between fluctuating environmental and competitive factors. Of most importance, it has led to the concept of the storage effect as a mechanism of species coexistence. Interactions between environment and competition in the lottery model stem from the life-history assumption that environmental variation and competition affect recruitment to the adult population, but not adult survival. The strong role of life-history attributes in this coexistence mechanism implies that its robustness should be checked for a variety of life-history scenarios. Here, age structure is added to the adult population, and the results are compared with the original lottery model. This investigation uses recently developed shape characteristics for mortality and fecundity schedules to quantify the effects of age structure on the long-term low-density growth rate of a species in competition with its competitor when applying the standard invasibility coexistence criterion. Coexistence conditions are found to be affected to a small degree by the presence of age structure in the adult population: Type III mortality broadens coexistence conditions, and type I mortality makes them narrower. The rates of recovery from low density for coexisting species, and the rates of competitive exclusion in other cases, are modified to a greater degree by age structure. The absolute rates of recovery or decline of a species from low density are increased by type I mortality or early peak reproduction, but reduced by type III mortality or late peak reproduction. Analytical approximations show how the most important effects can be considered as simple modifications of the long-term low-density growth rates for the original lottery model.  相似文献   

8.
Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.  相似文献   

9.
Aims The neutral theory of biodiversity provides a powerful framework for modeling macroecological patterns and interpreting species assemblages. However, there remain several unsolved problems, including the effect of relaxing the assumption of strict neutrality to allow for empirically observed variation in vital rates and the 'problem of time'—empirically measured coexistence times are much shorter than the prediction of the strictly neutral drift model. Here, we develop a nearly neutral model that allows for differential birth and death rates of species. This model provides an approach to study species coexistence away from strict neutrality.Methods Based on Moran's neutral model, which assumes all species in a community have the same competitive ability and have identical birth and death rates, we developed a model that includes birth–death trade-off but excludes speciation. This model describes a wide range of asymmetry from strictly neutral to nearly neutral to far from neutral and is useful for analyzing the effect of drift on species coexistence. Specifically, we analyzed the effects of the birth–death trade-off on the time and probability of species coexistence and quantified the loss of biodiversity (as measured by Simpson's diversity) due to drift by varying species birth and death rates.Important findings We found (i) a birth–death trade-off operating as an equalizing force driven by demographic stochasticity promotes the coexistence of nearly neutral species. Species near demographic trade-offs (i.e. fitness equivalence) can coexist even longer than that predicted by the strictly neutral model; (ii) the effect of birth rates on species coexistence is very similar to that of death rates, but their compensatory effects are not completely symmetric; (iii) ecological drift over time produces a march to fixation. Trade-off-based neutral communities lose diversity more slowly than the strictly neutral community, while non-neutral communities lose diversity much more rapidly; and (iv) nearly neutral systems have substantially shorter time of coexistence than that of neutral systems. This reduced time provides a promising solution to the problem of time.  相似文献   

10.
Despite the general acknowledgment of the role of niche and stochastic process in community dynamics, the role of species relative abundances according to both perspectives may have different effects regarding coexistence patterns. In this study, we explore a minimum probabilistic stochastic model to determine the relationship of populations relative and total abundances with species chances to outcompete each other and their persistence in time (i.e., unstable coexistence). Our model is focused on the effects drift (i.e., random sampling of recruitment) under different scenarios of selection (i.e., fitness differences between species). Our results show that taking into account the stochasticity in demographic properties and conservation of individuals in closed communities (zero-sum assumption), initial population abundance can strongly influence species chances to outcompete each other, despite fitness inequalities between populations, and also, influence the period of coexistence of these species in a particular time interval. Systems carrying capacity can have an important role in species coexistence by exacerbating fitness inequalities and affecting the size of the period of coexistence. Overall, the simple stochastic formulation used in this study demonstrated that populations initial abundances could act as an equalizing mechanism, reducing fitness inequalities, which can favor species coexistence and even make less fitted species to be more likely to outcompete better-fitted species, and thus to dominate ecological communities in the absence of niche mechanisms. Although our model is restricted to a pair of interacting species, and overall conclusions are already predicted by the Neutral Theory of Biodiversity, our main objective was to derive a model that can explicitly show the functional relationship between population densities and community mono-dominance odds. Overall, our study provides a straightforward understanding of how a stochastic process (i.e., drift) may affect the expected outcome based on species selection (i.e., fitness inequalities among species) and the resulting outcome regarding unstable coexistence among species.  相似文献   

11.
We investigate the possibility of coexistence of pure, inherited strategies belonging to a large set of potential strategies. We prove that under biologically relevant conditions every model allowing for coexistence of infinitely many strategies is structurally unstable. In particular, this is the case when the "interaction operator" which determines how the growth rate of a strategy depends on the strategy distribution of the population is compact. The interaction operator is not assumed to be linear. We investigate a Lotka-Volterra competition model with a linear interaction operator of convolution type separately because the convolution operator is not compact. For this model, we exclude the possibility of robust coexistence supported on the whole real line, or even on a set containing a limit point. Moreover, we exclude coexistence of an infinite set of equidistant strategies when the total population size is finite. On the other hand, for infinite populations it is possible to have robust coexistence in this case. These results are in line with the ecological concept of "limiting similarity" of coexisting species. We conclude that the mathematical structure of the ecological coexistence problem itself dictates the discreteness of the species.  相似文献   

12.
We address several conjectures raised in Cantrell et al. [Evolution of dispersal and ideal free distribution, Math. Biosci. Eng. 7 (2010), pp. 17-36 [ 9 ]] concerning the dynamics of a diffusion-advection-competition model for two competing species. A conditional dispersal strategy, which results in the ideal free distribution of a single population at equilibrium, was found in Cantrell et al. [ 9 ]. It was shown in [ 9 ] that this special dispersal strategy is a local evolutionarily stable strategy (ESS) when the random diffusion rates of the two species are equal, and here we show that it is a global ESS for arbitrary random diffusion rates. The conditions in [ 9 ] for the coexistence of two species are substantially improved. Finally, we show that this special dispersal strategy is not globally convergent stable for certain resource functions, in contrast with the result from [ 9 ], which roughly says that this dispersal strategy is globally convergent stable for any monotone resource function.  相似文献   

13.
Negative frequency dependence resulting from interspecific interactions is considered a driving force in allowing the coexistence of competitors. While interactions between species and genotypes can also result in positive frequency dependence, positive frequency dependence has usually been credited with hastening the extinction of rare types and is not thought to contribute to coexistence. In the present paper, we develop a stochastic cellular automata model that allows us to vary the scale of frequency dependence and the scale of dispersal. The results of this model indicate that positive frequency dependence will allow the coexistence of two species at a greater rate than would be expected from chance. This coexistence arises from the generation of banding patterns that will be stable over long time-periods. As a result, we found that positive frequency-dependent interactions over local spatial scales promote coexistence over neutral interactions. This result was robust to variation in boundary conditions within the simulation and to variation in levels of disturbance. Under all conditions, coexistence is enhanced as the strength of positive frequency-dependent interactions is increased.  相似文献   

14.
Individuals within any species exhibit differences in size, developmental state, or spatial location. These differences coupled with environmental fluctuations in demographic rates can have subtle effects on population persistence and species coexistence. To understand these effects, we provide a general theory for coexistence of structured, interacting species living in a stochastic environment. The theory is applicable to nonlinear, multi species matrix models with stochastically varying parameters. The theory relies on long-term growth rates of species corresponding to the dominant Lyapunov exponents of random matrix products. Our coexistence criterion requires that a convex combination of these long-term growth rates is positive with probability one whenever one or more species are at low density. When this condition holds, the community is stochastically persistent: the fraction of time that a species density goes below \(\delta >0\) approaches zero as \(\delta \) approaches zero. Applications to predator-prey interactions in an autocorrelated environment, a stochastic LPA model, and spatial lottery models are provided. These applications demonstrate that positive autocorrelations in temporal fluctuations can disrupt predator-prey coexistence, fluctuations in log-fecundity can facilitate persistence in structured populations, and long-lived, relatively sedentary competing populations are likely to coexist in spatially and temporally heterogenous environments.  相似文献   

15.
A model which incorporates random temporal variation in resource consumption rates is used to investigate the effects that such variation has on the coexistence of competitors. The analysis of the model and several extensions of it suggests that such variation in consumption rates will often allow two or more competitors to coexist while limited by the same resource. For variability to promote coexistence, it is necessary that the time scale of resource population dynamics be fast relative to the time scale of environmental change. Variability is especially likely to promote coexistence if there is a large variance in consumption rates, negative correlation between the consumption rates of different species, and a linear or concave relationship between resource consumption and per capita population growth. Many previous studies which have found coexistence of two or more species on one resource can be interpreted as examples of coexistence due to varying resource consumption rates.  相似文献   

16.
17.
We formulated a spatially explicit stochastic population model with an Allee effect in order to explore how invasive species may become established. In our model, we varied the degree of migration between local populations and used an Allee effect with variable birth and death rates. Because of the stochastic component, population sizes below the Allee effect threshold may still have a positive probability for successful invasion. The larger the network of populations, the greater the probability of an invasion occurring when initial population sizes are close to or above the Allee threshold. Furthermore, if migration rates are low, one or more than one patch may be successfully invaded, while if migration rates are high all patches are invaded.  相似文献   

18.
A model for the dynamics of a single species population of plants is proposed and its use demonstrated by the analysis of a simple example. The model incorporates the effects of microsite variation by allowing for individual differences in growth and death rates within each season. We demonstrate that an increase in the variance in individual growth rates may increase both the chances that a plant population will persist and the equilibrium size of that population. We also show that even if size-dependent death is occurring, it may not have a significant effect on the shape of the size frequency distribution. An extension of the model to multispecies communities of plants suggests an experimental procedure to determine whether competition is responsible for excluding a particular plant species from a community that appears otherwise to be suitable. A more detailed analysis of the model for a two-species community produces conditions for competitive coexistence reminiscent of those from the Lotka-Volterra competition equations. Another extension suggests that selection will favor those genotypes that maximize the product of germination probability and mass of seeds produced, if survivorship and growth are not substantially altered. Finally, an analog to r- and K-selection theory for animal populations is developed. Selection in low-density populations favors increasing growth rate, and in high-density populations favors minimizing the effect of neighbors on one's own growth rate.  相似文献   

19.
20.
In this paper, it is shown that for a class of reaction networks, the discrete stochastic nature of the reacting species and reactions results in qualitative and quantitative differences between the mean of exact stochastic simulations and the prediction of the corresponding deterministic system. The differences are independent of the number of molecules of each species in the system under consideration. These reaction networks are open systems of chemical reactions with no zero-order reaction rates. They are characterized by at least two stationary points, one of which is a nonzero stable point, and one unstable trivial solution (stability based on a linear stability analysis of the deterministic system). Starting from a nonzero initial condition, the deterministic system never reaches the zero stationary point due to its unstable nature. In contrast, the result presented here proves that this zero-state is a stable stationary state for the discrete stochastic system, and other finite states have zero probability of existence at large times. This result generalizes previous theoretical studies and simulations of specific systems and provides a theoretical basis for analyzing a class of systems that exhibit such inconsistent behavior. This result has implications in the simulation of infection, apoptosis, and population kinetics, as it can be shown that for certain models the stochastic simulations will always yield different predictions for the mean behavior than the deterministic simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号