首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cytoplasmic poly(A) elongation is one mechanism that regulates translational recruitment of maternal mRNA in early development. In Xenopus laevis, poly(A) elongation is controlled by two cis elements in the 3' untranslated regions of responsive mRNAs: the hexanucleotide AAUAAA and a U-rich structure with the general sequence UUUUUAAU, which is referred to as the cytoplasmic polyadenylation element (CPE). B4 RNA, which contains these sequences, is polyadenylated during oocyte maturation and maintains a poly(A) tail in early embryos. However, cdk2 RNA, which also contains these sequences, is polyadenylated during maturation but deadenylated after fertilization. This suggests that cis-acting elements in cdk2 RNA signal the removal of the poly(A) tail at this time. By using poly(A) RNA-injected eggs, we showed that two elements which reside 5' of the CPE and 3' of the hexanucleotide act synergistically to promote embryonic deadenylation of this RNA. When an identical RNA lacking a poly(A) tail was injected, these sequences also prevented poly(A) addition. When fused to CAT RNA, the cdk2 3' untranslated region, which contains these elements, as well as the CPE and the hexanucleotide, promoted poly(A) addition and enhanced chloramphenicol acetyltransferase activity during maturation, as well as repression of these events after fertilization. Incubation of fertilized eggs with cycloheximide prevented the embryonic inhibition of cdk2 RNA polyadenylation but did not affect the robust polyadenylation of B4 RNA. This suggests that a maternal mRNA, whose translation occurs only after fertilization, is necessary for the cdk2 deadenylation or inhibition of RNA polyadenylation. This was further suggested when poly(A)+ RNA isolated from two-cell embryos was injected into oocytes that were then allowed to mature. Such oocytes became deficient for cdk2 RNA polyadenylation but remained proficient for B4 RNA polyadenylation. These data show that CPE function is developmentally regulated by multiple sequences and factors.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
During development of eggs of the sea urchins, Pseudocenrotus depressus and Anthocidaris crassispina , the glycogen level is maintained from the time of fertilization to the swimming blastula stage and then decreases rapidly in the early gastrula stage. During development of eggs of Clypeaster japonicus. Hemicentrotus pulcherrimus and Mespilia globulus the glycogen content decreases slowly from the time of fertilization to the mesenchyme blastula stage, and then more rapidly during gastrulation. The amounts of glycogen mobilized in the embryos from the time of fertilization to the morula stage correspond to 67% of the amount of O2 consumed in Mespilia eggs, 62% in Clypeaster eggs, 30% in Hemicentrotus eggs and 0–4% in Anthocidaris and Pseudocentrotus eggs. The main energy source in early development seems to differ in different species. When eggs and embryos were incubated with [14C]glucose for 10min, considarable 14C-radioactivity accumulated in the glycogen fraction. The rate of [14C]glucose incorporation into glycogen increased gradually during the first 6 hr after fertilization (up to the morula stage), decreases during the next 4 hr (up to the early blastula stage), and then increased again.  相似文献   

13.
14.
RNA isolated from Urechis caupo mature oocytes and embryos was analyzed for the presence of histone messenger RNAs (mRNAs) by in vitro translation and by filter blot hybridization to determine the contribution of maternal and newly transcribed histone mRNAs to the pattern of histone synthesis during early development. Histone mRNAs were not detected in mature oocyte RNA which suggests that relatively few if any maternal histone mRNAs are sequestered in the mature oocytes. Histone mRNAs were detected in cleavage-stage RNA and increased in amount from midcleavage through late gastrula stages. The in vitro translation analysis also demonstrated that the amount of H1 histone mRNA in late cleavage- and early blastula-stage embryos exceeds that of the individual core histone mRNAs. The disproportionate accumulation of individual histone mRNAs correlates with the noncoordinate synthesis of H1 and core histones which occurs during early embryogenesis.  相似文献   

15.
The distribution of cytoplasmic messenger ribonucleic acids (RNAs) in translationally active polysomes and inactive ribonucleoprotein particles changes during early development. Cellular levels and subcellular distributions have been determined for most messenger RNAs, but little is known about how individual sequences change. In this study, we used hybridization techniques with cloned sequences to measure the titers of 23 mitochondrial and non-mitochondrial polyadenylate-containing [poly(A)+]RNA species during early development in the frog Xenopus laevis. These RNA species were some of the most abundant cellular poly(A)+ RNA species in early embryos. The concentrations of most of the non-mitochondrial (cytoplasmic) RNAs remained constant in embryos during the first 10 h of development, although the concentrations of a few species increased. During neurulation, we detected several new poly(A)+ RNA sequences in polysomes, and with one possible exception the accumulation of these sequences was largely the result of new synthesis or de novo polyadenylation and not due to the recruitment of nonpolysomal (free ribonucleoprotein) poly(A)+ RNA. We measured the subcellular distributions of these RNA species in polysomes and free ribonucleoproteins during early development. In gastrulae, non-mitochondrial RNAs were distributed differentially between the two cell fractions; some RNA species were represented more in free ribonucleoproteins, and others were represented less. By the neurula stage this differential distribution in polysomes and free ribonucleoproteins was less pronounced, and we found species almost entirely in polysomes. Some poly(A)+ RNA species transcribed from the mitochondrial genome were localized within the mitochondria and were mapped to discrete fragments of the mitochondrial genome. Much of this poly(A)+ RNA was transcribed from the ribosomal locus. Nonribosomal mitochondrial poly(A)+ RNA species became enriched in polysome-like structures after fertilization, with time courses similar to the time course of mobilization of cytoplasmic poly(A)+ RNA.  相似文献   

16.
17.
18.
Anti-keratin monoclonal antibody AF5 was introduced into fertilized eggs of Xenopus laevis.,and its effects on embryonic development were studied.Survival rate of the antikeratin-injected embryos was much lower(only 35.67% at gastrula)than that of the control(74.85% at gastrula),in which embryos were injected with mouse IgG.Most of survivors in the experimental series showed aberrant external appearance.On the other hand,in cleavage stage,ie 2-7h after fertilization,immunohistochemical staining of embryos showed that the expermental embryos were mostly keratin negative,while embryos of the control ones were keratin positive.When introducing this antikeratin into one cell of a 2-cell embryo,only the uninjected half of the embryo continued its development while the other half could not develop at all.These results suggested that intact keratin cytoskeleton in early embryos is indispensable to the embryonic development of Xenopus laevis.  相似文献   

19.
Summary Glucose-6-phosphatase (G-6-Pase) activity was analyzed during early embryogenesis of the sea urchinS. purpuratus. This activity is detected in very low levels in unfertilized eggs and early embryos but is present at high levels in preparations of endoplasmic reticulum (microsomes) from gastrula stage embryos. The approximately eight-fold increase in the relative activity of G-6-Pase associated with the ER occurs abruptly during a 12 h interval at gastrulation, and thereafter remains at a level comparable to that found in mammalian liver microsomes. The enzyme activity associated with the ER of gastrula stage embryos was completely eliminated from the microsomal pellet when cell lysates were first treated with non-ionic detergent. Analysis of germlayer tissues from late stage pluteus embryos revealed that G-6-Pase activity was more highly enriched in microsomes of endo/mesoderm tissues as compared to microsomes from ectoderm. The increase in ER associated G-6-Pase activity during embryonic development and its enriched activity in the ER of endo/mesoderm, as well as the observation that the signal recognition particle becomes associated with the ER at gastrulation (Le Blanc and Infante 1989), opens the question that this cellular organelle may be differentiating during embryogenesis in sea urchins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号