首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.

Background  

In legumes, seed storage proteins are important for the developing seedling and are an important source of protein for humans and animals. Lupinus angustifolius (L.), also known as narrow-leaf lupin (NLL) is a grain legume crop that is gaining recognition as a potential human health food as the grain is high in protein and dietary fibre, gluten-free and low in fat and starch.  相似文献   

2.
3.
Narrow-leaf lupin (NLL) is the main legume crop grown in rotation with wheat and other cereals in Western Australia. Efforts to improve NLL germplasm by use of genetic technologies have been hampered by the lack of an efficient genetic transformation method, an issue that is in common with dominant crop legumes globally. Prior research has primarily used the bar gene for phosphinothricin (PPT) resistance. The aim of recent research has been to investigate alternative selection methodologies, in order to determine whether the limitations of low frequency of transgenic shoots, combined with chimerism at T0 could be overcome. Investigation of hygromycin resistance as a selectable marker compared to PPT is reported here. The results suggested that hygromycin resistance was a more suitable selectable marker for NLL transformation than PPT. Surprisingly, from investigation of transformation using the GUS reporter gene, it was also observed that transformation frequency was greater when selection treatment was reduced or delayed, compared to the existing protocols. To further investigate this observation, an eGFP expressing construct was prepared. Observations within the first week after Agrobacterium exposure of lupin explants demonstrated that transformation of NLL explant cells was not a rate-limiting step. Instead, the results indicated that the current selection methodology was killing the cells that were competent to regenerate into transgenic shoots. It was concluded that further research on the development of the treated explants should focus on delayed selection and exposure to Agrobacterium of cells below the apical meristem.  相似文献   

4.
5.
Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub‐Saharan Africa, that is resilient to hot and drought‐prone environments. An assembly of the single‐haplotype inbred genome of cowpea IT97K‐499‐35 was developed by exploiting the synergies between single‐molecule real‐time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination‐poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high‐recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS‐LRR and the SAUR‐like auxin superfamilies compared with other warm‐season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.  相似文献   

6.
Certain legume crops, including white lupin (Lupinus albus L.), mobilise soil-bound phosphorus (P) through root exudates. The changes in the rhizosphere enhance P availability to these crops, and possibly to subsequent crops growing in the same soil. We conducted a pot experiment to compare phosphorus acquisition of three legume species with that of wheat, and to determine whether the legume crops influence growth and P uptake of a subsequent wheat crop. Field pea (Pisum sativum L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.) and wheat (Triticum aestivum L.) were grown in three different soils to which we added no or 20 mg P kg–1 soil (P0, P20). Growth, P content and rhizosphere carboxylates varied significantly amongst crops, soils and P levels. Total P content of the plants was increased with applied phosphorus. Phosphorus content of faba bean was 3.9 and 8.8 mg/pot, at P0 and P20, respectively, which was about double that of all other species at the respective P levels. Field pea and white lupin had large amounts of rhizosphere carboxylates, whereas wheat and faba bean had negligible amounts in all three soils at both P levels. Wheat grew better after legumes than after wheat in all three soils. The effect of the previous plant species was greater when these previous species had received P fertiliser. All the legumes increased plant biomass of subsequent wheat significantly over the unplanted pots in all the soils. Faba bean was unparalleled in promoting subsequent wheat growth on all fertilised soils. This experiment clearly demonstrated a residual benefit of the legume crops on the growth of the subsequent wheat crop due to enhanced P uptake. Faba bean appeared to be a suitable P-mobilising legume crop plant for use in rotations with wheat.  相似文献   

7.
Lupins are highly nutritious fodder and pulse crops but the greatest challenge in their genetic enhancement is the difficulty in obtaining hybrids through conventional sexual approaches. To bypass this, a procedure for the culture of hitherto recalcitrant lupin protoplasts is now being developed so that the somatic hybrids can be regenerated. This study provides a basis for a regime to culture lupin protoplasts. Cotyledonary protoplasts of white lupin (Lupinus albus) were plated in two diverse media for the evaluation of various plating regimes. The protoplasts divided in agarose as well as in Gelrite? but embedding in agarose at 6 g L?1 concentration resulted in a higher rate of mitosis. Sodium alginate embedding inhibited protoplast division. Protoplast plating in the form of liquid suspension was significantly inferior to embedding. A filter paper substratum was clearly noxious to protoplast division. Vis‐à‐vis other designs of plating, a 400% improvement in protoplast elongation and division was achieved by plating in the form of 25 μL droplets at the base of 60 mm × 15 mm Nunclon? dish and overlaying with liquid medium. Better results in terms of protoplast elongation and division were obtained with K8p medium as compared to the AS medium. This report on lupin protoplast culture represents a significant breakthrough in the genus in which morphogenesis has not been described to date.  相似文献   

8.
For pulse legume research to fully capitalise on developments in plant molecular genetics, a high throughput genetic transformation methodology is required. In Western Australia the dominant grain legume is Lupinus angustifolius L. (narrow leafed lupin; NLL). Standard transformation methodology utilising Agrobacterium tumefaciens on wounded NLL seedling shoot apices, in combination with two different herbicide selections (phosphinothricin and glyphosate) is time consuming, inefficient, and produces chimeric shoots that often fail to yield transgenic progeny. Investigation of hygromycin as an alternative selection in combination with expression of green fluorescent protein indicated that transformation of NLL apical cells was not the rate limiting step to achieve transgenic shoot materials. In this research it was identified that despite ready transformation, apical cells were not competent to regenerate. However a deep and broad wounding procedure to expose underlying axillary shoot and vascular cells to Agrobacterium, in combination with delayed selection proved successful, increasing initial explants transformation efficiency up to 75?% and generating axillary shoots with significant transgenic content. Based on knowledge gained from studies of plant chimeras, further subculture of these initial axillary shoots will result in development of low chimeric transgenic materials with heritable content. Furthermore, the method was also tested successfully on other Lupinus species, faba bea and field pea. These results demonstrate that development of a high yielding transformation methodology for pulse legume crops is achievable.  相似文献   

9.
Glycine latifolia (Benth.) Newell & Hymowitz (2= 40), one of the 27 wild perennial relatives of soybean, possesses genetic diversity and agronomically favorable traits that are lacking in soybean. Here, we report the 939‐Mb draft genome assembly of G. latifolia (PI 559298) using exclusively linked‐reads sequenced from a single Chromium library. We organized scaffolds into 20 chromosome‐scale pseudomolecules utilizing two genetic maps and the Glycine max (L.) Merr. genome sequence. High copy numbers of putative 91‐bp centromere‐specific tandem repeats were observed in consecutive blocks within predicted pericentromeric regions on several pseudomolecules. No 92‐bp putative centromeric repeats, which are abundant in G. max, were detected in G. latifolia or Glycine tomentella. Annotation of the assembled genome and subsequent filtering yielded a high confidence gene set of 54 475 protein‐coding loci. In comparative analysis with five legume species, genes related to defense responses were significantly overrepresented in Glycine‐specific orthologous gene families. A total of 304 putative nucleotide‐binding site (NBS)‐leucine‐rich‐repeat (LRR) genes were identified in this genome assembly. Different from other legume species, we observed a scarcity of TIR‐NBS‐LRR genes in G. latifolia. The G. latifolia genome was also predicted to contain genes encoding 367 LRR‐receptor‐like kinases, a family of proteins involved in basal defense responses and responses to abiotic stress. The genome sequence and annotation of G. latifolia provides a valuable source of alternative alleles and novel genes to facilitate soybean improvement. This study also highlights the efficacy and cost‐effectiveness of the application of Chromium linked‐reads in diploid plant genome de novo assembly.  相似文献   

10.
11.
Mitochondria isolated from chickpea (Cicer arietinum) possess substantial alternative oxidase (AOX) activity, even in non‐stressed plants, and one or two AOX protein bands were detected immunologically, depending on the organ. Four different AOX isoforms were identified in the chickpea genome: CaAOX1 and CaAOX2A, B and D. CaAOX2A was the most highly expressed form and was strongly expressed in photosynthetic tissues, whereas CaAOX2D was found in all organs examined. These results are very similar to those of previous studies with soybean and siratro. Searches of available databases showed that this pattern of AOX genes and their expression was common to at least 16 different legume species. The evolution of the legume AOX gene family is discussed, as is the in vivo impact of an inherently high AOX capacity in legumes on growth and responses to environmental stresses.  相似文献   

12.
13.
14.
Legume genomes: more than peas in a pod   总被引:6,自引:0,他引:6  
A growing array of sequence-based tools is helping to reveal the organization, evolution and syntenic relationships of legume genomes. The results indicate that legumes form a coherent taxonomic group with frequent and widespread macro- and microsynteny. This is good news for two model legume systems, Medicago truncatula and Lotus japonicus. Indeed, both models have recently been used to clone and characterize genes for nodulation-related receptors that were originally described in legumes with more complex genomes. Studies of legume genomes have also provided insight into genome size, gene clustering, genome duplications and repetitive elements. To understand legume genomes better, it will be necessary to develop tools for studying under-represented taxa beyond the relatively small group of economically important species that have been examined so far.  相似文献   

15.
Glycogen synthase kinase/SHAGGY‐like kinases (SKs) are a highly conserved family of signaling proteins that participate in many developmental, cell‐differentiation, and metabolic signaling pathways in plants and animals. Here, we investigate the involvement of SKs in legume nodulation, a process requiring the integration of multiple signaling pathways. We describe a group of SKs in the model legume Lotus japonicus (LSKs), two of which respond to inoculation with the symbiotic nitrogen‐fixing bacterium Mesorhizobium loti. RNAi knock‐down plants and an insertion mutant for one of these genes, LSK1, display increased nodulation. Ηairy‐root lines overexpressing LSK1 form only marginally fewer mature nodules compared with controls. The expression levels of genes involved in the autoregulation of nodulation (AON) mechanism are affected in LSK1 knock‐down plants at low nitrate levels, both at early and late stages of nodulation. At higher levels of nitrate, these same plants show the opposite expression pattern of AON‐related genes and lose the hypernodulation phenotype. Our findings reveal an additional role for the versatile SK gene family in integrating the signaling pathways governing legume nodulation, and pave the way for further study of their functions in legumes.  相似文献   

16.
Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m?2 year?1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.  相似文献   

17.
18.
  • There is growing interest in harnessing the genetic and adaptive diversity of crop wild relatives to improve drought resilience of elite cultivars. Rainfall gradients exert strong selection pressure on both natural and agricultural ecosystems. Understanding plant responses to these facilitates crop improvement.
  • Wild and domesticated narrow‐leafed lupin (NLL) collected along Mediterranean terminal drought stress gradients was evaluated under contrasting reproductive phase water supply in controlled field, glasshouse and cabinet studies. Plant phenology, growth and productivity, water use and stress responses were measured over time.
  • There is an integrated suite of adaptive changes along rainfall gradients in NLL. Low rainfall ecotypes flower earlier, accumulate lower seed numbers, biomass and leaf area, and have larger root:shoot ratios than high rainfall ecotypes. Water‐use is lower and stress onset slower in low compared to high rainfall ecotypes. Water‐use rates and ecotypic differences in stress response (Ψleaf decline, leaf loss) are lower in NLL than yellow lupin (YL). To mitigate the effects of profligate water use, high rainfall YL ecotypes maintain higher leaf water content over declining leaf water potential than low rainfall ecotypes. There is no evidence for such specific adaptation in NLL.
  • The data suggests that appropriate phenology is the key adaptive trait to rainfall gradients in NLL because of the flow‐on effects on biomass production, fitness, transpiration and stress onset, and the lack of physiological adaptations as in YL. Accordingly, it is essential to match phenology with target environment in order to minimize risk and maximize yield potential.
  相似文献   

19.
Narrow-leafed lupin (Lupinus angustifolius L.) is a valuable legume crop for animal feed and human health food because of its high proteins content. However, the genetics of seed storage proteins is unclear, limiting further improvement of protein quantity and quality. In this study, matrix-assisted laser desorption/ionization time of flight mass spectrometry was used for the first time to analyze lupin seed storage proteins and the spectra generated was treated as markers to investigate the chromosome locations controlling seed storage proteins in the narrow-leafed lupin. In a recombinant inbred line population of 89 individuals, 48 polymorphic protein peaks were identified and seven of which were successfully mapped onto four existing linkage groups: two on NLL-04, three on NLL-05, one on NLL-07 and one on NLL-14, with LOD values ranging from 2.6 to 7.7 confirming a significant linkage. Most protein-based markers showed distorted segregation and were failed to be integrated into the reference map. Among them, 31 were grouped into six clusters and the other ten were totally unlinked. This study provides a significant clue to study the comparative genomics/proteomics among legumes as well as for protein marker-assisted breeding. The distribution pattern of genes controlling seed storage protein revealed in this study probably exists universally among legumes or even all plants and animals. Whether genes controlling seed storage protein share the same gene expression pattern controlling other enzymes and what is the mechanism behind it are the questions which remain to be answered in the future.  相似文献   

20.
Shifting from a livestock-based protein diet to a plant-based protein diet has been proposed as an essential requirement to maintain global food sustainability, which requires the increased production of protein-rich crops for direct human consumption. Meanwhile, the lack of sufficient genetic diversity in crop varieties is an increasing concern for sustainable food supplies. Countering this concern requires a clear understanding of the domestication process and dynamics. Narrow-leafed lupin (Lupinus angustifolius L.) has experienced rapid domestication and has become a new legume crop over the past century, with the potential to provide protein-rich seeds. Here, using long-read whole-genome sequencing, we assembled the third-generation reference genome for the narrow-leafed lupin cultivar Tanjil, comprising 20 chromosomes with a total genome size of 615.8 Mb and contig N50 = 5.65 Mb. We characterized the original mutation and putative biological pathway resulting in low seed alkaloid level that initiated the recent domestication of narrow-leafed lupin. We identified a 1133-bp insertion in the cis-regulatory region of a putative gene that may be associated with reduced pod shattering (lentus). A comparative analysis of genomic diversity in cultivars and wild types identified an apparent domestication bottleneck, as precisely predicted by the original model of the bottleneck effect on genetic variability in populations. Our results identify the key domestication genetic loci and provide direct genomic evidence for a domestication bottleneck, and open up the possibility of knowledge-driven de novo domestication of wild plants as an avenue to broaden crop plant diversity to enhance food security and sustainable low-carbon emission agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号