首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Yang D  Goldsmith EB  Lin Y  Waldman BC  Kaza V  Waldman AS 《Genetics》2006,174(1):135-144
We examined the mechanism by which recombination between imperfectly matched sequences (homeologous recombination) is suppressed in mammalian chromosomes. DNA substrates were constructed, each containing a thymidine kinase (tk) gene disrupted by insertion of an XhoI linker and referred to as a "recipient" gene. Each substrate also contained one of several "donor" tk sequences that could potentially correct the recipient gene via recombination. Each donor sequence either was perfectly homologous to the recipient gene or contained homeologous sequence sharing only 80% identity with the recipient gene. Mouse Ltk(-) fibroblasts were stably transfected with the various substrates and tk(+) segregants produced via intrachromosomal recombination were recovered. We observed exclusion of homeologous sequence from gene conversion tracts when homeologous sequence was positioned adjacent to homologous sequence in the donor but not when homeologous sequence was surrounded by homology in the donor. Our results support a model in which homeologous recombination in mammalian chromosomes is suppressed by a nondestructive dismantling of mismatched heteroduplex DNA (hDNA) intermediates. We suggest that mammalian cells do not dismantle mismatched hDNA by responding to mismatches in hDNA per se but rather rejection of mismatched hDNA appears to be driven by a requirement for localized homology for resolution of recombination.  相似文献   

2.
George CM  Lyndaker AM  Alani E 《DNA Repair》2011,10(11):1086-1094
In the early steps of homologous recombination, single-stranded DNA (ssDNA) from a broken chromosome invades homologous sequence located in a sister or homolog donor. In genomes that contain numerous repetitive DNA elements or gene paralogs, recombination can potentially occur between non-allelic/divergent (homeologous) sequences that share sequence identity. Such recombination events can lead to lethal chromosomal deletions or rearrangements. However, homeologous recombination events can be suppressed through rejection mechanisms that involve recognition of DNA mismatches in heteroduplex DNA by mismatch repair factors, followed by active unwinding of the heteroduplex DNA by helicases. Because factors required for heteroduplex rejection are hypothesized to be targets and/or effectors of the DNA damage response (DDR), a cell cycle control mechanism that ensures timely and efficient repair, we tested whether the DDR, and more specifically, the RAD9 gene, had a role in regulating rejection. We performed these studies using a DNA repair assay that measures repair by single-strand annealing (SSA) of a double-strand break (DSB) using homeologous DNA templates. We found that repair of homeologous DNA sequences, but not identical sequences, induced a RAD9-dependent cell cycle delay in the G2 stage of the cell cycle. Repair through a divergent DNA template occurred more frequently in RAD9 compared to rad9Δ strains. However, repair in rad9Δ mutants could be restored to wild-type levels if a G2 delay was induced by nocodazole. These results suggest that cell cycle arrest induced by the Rad9-dependent DDR allows repair between divergent DNA sequences despite the potential for creating deleterious genome rearrangements, and illustrates the importance of additional cellular mechanisms that act to suppress recombination between divergent DNA sequences.  相似文献   

3.
Mouse Ltk- cell lines that contained a herpes simplex virus type 1 (HSV-1) thymidine kinase (tk) gene with a 16-bp insertion mutation linked to either a defective HSV-2 tk gene or a hybrid tk sequence comprised of HSV-1 and HSV-2 tk sequences were constructed. HSV-1 and HSV-2 tk genes have 81% nucleotide identity and hence are homeologous. Correction of the insertion mutant HSV-1 tk gene via recombination with the hybrid tk sequence required an exchange between homeologous tk sequences, although recombination could initiate within a region of significant sequence identity. Seven cell lines containing linked HSV-1 and HSV-1-HSV-2 hybrid tk sequences gave rise to tk+ segregants at an average rate of 10(-8) events per cell division. DNA sequencing revealed that each recombinant from these lines displayed an apparent gene conversion which involved an accurate transfer of an uninterrupted block of information between homeologous tk sequences. Conversion tract lengths ranged from 35 to >330 bp. In contrast, cell lines containing linked HSV-1 and HSV-2 tk sequences with no significant stretches of sequence identity had an overall rate of homeologous recombination of <10(-9). One such cell line produced homeologous recombinants at a rate of 10(-8). Strikingly, all homeologous recombinants from this latter cell line were due to crossovers between the HSV-1 and HSV-2 tk genes. Our results, which provide the first detailed analysis of homeologous recombination within a mammalian genome, suggest that rearrangements in mammalian genomes are regulated by the degree of sequence divergence located at the site of recombination initiation.  相似文献   

4.
DNA mismatch repair influences the outcome of recombination events between diverging DNA sequences. Here we discuss how mismatch repair proteins are active in different homologous recombination subpathways and specific reaction steps, resulting in differential modulation of these recombination events, with a focus on the mechanism of heteroduplex rejection during the inhibition of recombination between slightly diverged (homeologous) DNA sequences.  相似文献   

5.
Different modes of in vivo repair of double-strand breaks (DSBs) have been described for various organisms: the recombinational DSB repair (DSBR) mode, the single-strand annealing (SSA) mode, and end-to-end joining. To investigate these modes of DSB repair in Saccharomyces cerevisiae, we have examined the fate of in vitro linearized replicative plasmids during transformation with respect to several parameters. We found that (i) the efficiencies of both intramolecular and intermolecular linear plasmid DSB repair are homology dependent (according to the amount of DNA used during transformation [100 ng or less], recombination between similar but not identical [homeologous] P450s sequences sharing 73% identity is 2- to 18-fold lower than recombination between identical sequences); (ii) the RAD52 gene product is not essential for intramolecular recombination between homologous and homeologous direct repeats (as in the wild-type strain, recombination occurs with respect to the overall alignment of the parental sequences); (iii) in contrast, the RAD52 gene product is required for intermolecular interactions (the rare transformants which are obtained contain plasmids resulting from deletion-forming intramolecular events involving little or no sequence homology); (iv) similarly, sequencing data revealed examples of intramolecular joining within the few terminal nucleotides of the transforming DNA upon transformation with a linear plasmid with no repeat in the wild-type strain. The recombinant junctions of the rare illegitimate events obtained with S. cerevisiae are very similar to those observed in the repair of DSB in mammalian cells. Together, these and previous results suggest the existence of alternative modes for DSB repair during transformation which differ in their efficiencies and in the structure of their products. We discuss the implications of these results with respect to the existence of alternative pathways and the role of the RAD52 gene product.  相似文献   

6.
Homeologous recombination (recombination between partially homeologous DNA sequences) was used to produce novel functional deacetoxycephalosporin C synthase (expandase) enzymes in vivo which are hybrids of the Streptomyces clavuligerus and Nocardia lactamdurans enzymes. DNA sequencing of hybrids obtained in E. coli showed that recombination had occurred at several locations within conserved sequences as short as 2 bp. Recombination events obtained in a Streptomyces background resulted in expandases with altered activity on penicillin G as determined by bioassay and HPLC.  相似文献   

7.
In plant breeding, the ability to manipulate genetic (meiotic) recombination would be beneficial for facilitating gene transfer from wild relatives of crop plants. The DNA mismatch repair (MMR) system helps maintain genetic integrity by correcting base mismatches that arise via DNA synthesis or damage, and antagonizes recombination between homeologous (divergent) DNA sequences. Previous studies have established that the genomes of cultivated tomato (Solanum lycopersicum) and the wild relative S. lycopersicoides are substantially diverged (homeologous) such that recombination between their chromosomes is strongly reduced. Here, we report the effects on homeologous recombination of suppressing endogenous MMR genes in S. lycopersicum via RNAi-induced silencing of SlMSH2 and SlMSH7 or overexpressing dominant negatives of Arabidopsis MSH2 (AtMSH2-DN) in an alien substitution line (SL-8) of S. lycopersicoides in tomato. We show that certain inhibitions of MMR (RNAi of SlMSH7, AtMSH2-DN) are associated with modest increases in homeologous recombination, ranging from 3.8 to 29.2% (average rate of 17.8%) compared to controls. Unexpectedly, only the AtMSH2-DN proteins but not RNAi-induced silencing of MSH2 was found to increase homeologous recombination. The ratio of single to double crossovers (SCO:DCO ratio) decreased by approximately 50% in progeny of the AtMSH2-DN parents. An increase in the frequency of heterozygous SL-8 plants was also observed in the progeny of the SlMSH7-RNAi parents. Our findings may contribute to acceleration of introgression in cultivated tomato.  相似文献   

8.
M. A. Petit  J. Dimpfl  M. Radman    H. Echols 《Genetics》1991,129(2):327-332
Excessive recombination between repeated, interspersed, and diverged DNA sequences is a potential source of genomic instability. We have investigated the possibility that a mechanism exists to suppress genetic exchange between these quasi-homologous (homeologous) sequences. We examined the role of the general mismatch repair system of Escherichia coli because previous work has shown that the mismatch repair pathway functions as a barrier to interspecies recombination between E. coli and Salmonella typhimurium. The formation of large duplications by homeologous recombination in E. coli was increased some tenfold by mutations in the mutL and mutS genes that encode the mismatch recognition proteins. These findings indicate that the mismatch recognition proteins act to prevent excessive intrachromosomal exchanges. We conclude that mismatch repair proteins serve as general controllers of the fidelity of genetic inheritance, acting to suppress chromosomal rearrangements as well as point mutations.  相似文献   

9.
Mismatch repair (MMR) systems are central to maintaining genome stability in prokaryotes and eukaryotes. MMR proteins play a fundamental role in avoiding mutations, primarily by removing misincorporation errors that occur during DNA replication. MMR proteins also act during genetic recombination in steps that include repairing mismatches in heteroduplex DNA, modulating meiotic crossover control, removing 3' non-homologous tails during double-strand break repair, and preventing recombination between divergent sequences. In this review we will, first, discuss roles for MMR proteins in repairing mismatches that occur during recombination, particularly during meiosis. We will also explore how studying this process has helped to refine models of double-strand break repair, and particularly to our understanding of gene conversion gradients. Second, we will examine the role of MMR proteins in repressing homeologous recombination, i.e. recombination between divergent sequences. We will also compare the requirements for MMR proteins in preventing homeologous recombination to the requirements for these proteins in mismatch repair.  相似文献   

10.
The pma1-105 mutation reduces the activity of the yeast plasma membrane H(+)-ATPase and causes cells to be both low pH and ammonium ion sensitive and resistant to the antibiotic hygromycin B. Revertants that can grow at pH 3.0 and on ammonium-containing plates frequently arise by ectopic recombination between pma1-105 and PMA2, a diverged gene that shares 85% DNA sequence identity with PMA1. The gene conversion tracts of revertants of pma1-105 were determined by DNA sequencing the hybrid PMA1::PMA2 genes. Gene conversion tracts ranged from 18-774 bp. The boundaries of these replacements were short (3-26 bp) regions of sequences that were identical between PMA1 and PMA2. These boundaries were not located at the regions of greatest shared identity between the two PMA genes. Similar results were obtained among low pH-resistant revertants of another mutation, pma1-147. One gene conversion was obtained in which the resulting PMA1::PMA2 hybrid was low pH-resistant but still hygromycin B-resistant. This partially active gene differs from a wild-type revertant only by the presence of two PMA2-encoded amino acid substitutions. Thus, some regions of PMA2 are not fully interchangeable with PMA1. We have also compared the efficiency of recombination between pma1-105 and either homeologous PMA2 sequence or homologous PMA1 donor sequences inserted at the same location. PMA2 X pma1-105 recombination occurred at a rate approximately 75-fold less than PMA1 X pma1-105 events. The difference in homology between the interacting sequences did not affect the proportion of gene conversion events associated with a cross-over, as in both cases approximately 5% of the Pma(+) recombinants had undergone reciprocal translocations between the two chromosomes carrying pma1-105 and the donor PMA sequences. Reciprocal translocations were identified by a simple and generally useful nutritional test.  相似文献   

11.
Mammalian cells contain numerous nonallelic repeated sequences, such as multicopy genes, gene families, and repeated elements. One common feature of nonallelic repeated sequences is that they are homeologous (not perfectly identical). Our laboratory has been studying recombination between homeologous sequences by using LINE-1 (L1) elements as substrates. We showed previously that an exogenous L1 element could readily acquire endogenous L1 sequences by nonreciprocal homologous recombination. In the study presented here, we have investigated the propensity of exogenous L1 elements to be involved in a reciprocal process, namely, crossing-overs. This would result in the integration of the exogenous L1 element into an endogenous L1 element. Of over 400 distinct integration events analyzed, only 2% involved homologous recombination between exogenous and endogenous L1 elements. These homologous recombination events were imprecise, with the integrated vector being flanked by one homologous and one illegitimate junction. This type of structure is not consistent with classical crossing-overs that would result in two homologous junctions but rather is consistent with one-sided homologous recombination followed by illegitimate integration. Contrary to what has been found for reciprocal homologous integration, the degree of homology between the exogenous and endogenous L1 elements did not seem to play an important role in the choice of recombination partners. These results suggest that although exogenous and endogenous L1 elements are capable of homologous recombination, this seldom leads to crossing-overs. This observation could have implications for the stability of mammalian genomes.  相似文献   

12.
Efficient plastid transformation has been achieved in Nicotiana tabacum using cloned plastid DNA of Solanum nigrum carrying mutations conferring spectinomycin and streptomycin resistance. The use of the incompletely homologous (homeologous) Solanum plastid DNA as donor resulted in a Nicotiana plastid transformation frequency comparable with that of other experiments where completely homologous plastid DNA was introduced. Physical mapping and nucleotide sequence analysis of the targeted plastid DNA region in the transformants demonstrated efficient site-specific integration of the 7.8-kb Solanum plastid DNA and the exclusion of the vector DNA. The integration of the cloned Solanum plastid DNA into the Nicotiana plastid genome involved multiple recombination events as revealed by the presence of discontinuous tracts of Solanum-specific sequences that were interspersed between Nicotiana-specific markers. Marked position effects resulted in very frequent cointegration of the nonselected peripheral donor markers located adjacent to the vector DNA. Data presented here on the efficiency and features of homeologous plastid DNA recombination are consistent with the existence of an active RecA-mediated, but a diminished mismatch, recombination/repair system in higher-plant plastids.  相似文献   

13.
The products of the yeast mismatch repair genes MSH2 and MSH3 participate in the inhibition of genetic recombination between homeologous (divergent) DNA sequences. In strains deficient for these genes, homeologous recombination rates between repeated elements are elevated due to the loss of this inhibition. In this study, the effects of these mutations were further analyzed by quantitation of mitotic homeologous recombinants as crossovers, gene conversions or exceptional events in wild-type, msh2, msh3 and msh2 msh3 mutant strains. When homeologous sequences were present as a direct repeat in one orientation, crossovers and gene conversions were elevated in msh2, msh3 and msh2 msh3 strains. The increases were greater in the msh2 msh3 double mutant than in either single mutant. When the order of the homeologous sequences was reversed, the msh2 mutation again yielded increased rates of crossovers and gene conversions. However, in an msh3 strain, gene conversions occurred at higher levels but interchromosomal crossovers were not increased and intrachromosomal crossovers were reduced relative to wild type. The msh2 msh3 double mutant behaved like the msh2 single mutant in this orientation. Control strains harboring homologous duplications were largely but not entirely unaffected in mutant strains, suggesting specificity for the mismatched intermediates of homeologous recombination. In all strains, very few (<10%) recombinants could be attributed to exceptional events. These results suggest that MSH2 and MSH3 can function differentially to control homeologous exchanges.  相似文献   

14.
S Stambuk  M Radman 《Genetics》1998,150(2):533-542
A genetic analysis of interspecies recombination in Escherichia coli between the linear Hfr DNA from Salmonella typhimurium and the circular recipient chromosome reveals some fundamental aspects of recombination between related DNA sequences. The MutS and MutL mismatch binding proteins edit (prevent) homeologous recombination between these 16% diverged genomes by at least two distinct mechanisms. One is MutH independent and presumably acts by aborting the initiated recombination through the UvrD helicase activity. The RecBCD nuclease might contribute to this editing step, presumably by preventing reiterated initiations of recombination at a given locus. The other editing mechanism is MutH dependent, requires unmethylated GATC sequences, and probably corresponds to an incomplete long-patch mismatch repair process that does not depend on UvrD helicase activity. Insignificant effects of the Dam methylation of parental DNAs suggest that unmethylated GATC sequences involved in the MutH-dependent editing are newly synthesized in the course of recombination. This hypothetical, recombination-associated DNA synthesis involves PriA and RecF functions, which, therefore, determine the extent of MutH effect on interspecies recombination. Sequence divergence of recombining DNAs appears to limit the frequency, length, and stability of early heteroduplex intermediates, which can be stabilized, and the recombinants mature via the initiation of DNA replication.  相似文献   

15.
We have previously shown that recombination between 400-bp substrates containing only 4-bp differences, when present in an inverted repeat orientation, is suppressed by >20-fold in wild-type strains of S. cerevisiae. Among the genes involved in this suppression were three genes involved in mismatch repair--MSH2, MSH3, and MSH6--and one in nucleotide excision repair, RAD1. We now report the involvement of these genes in interchromosomal recombination occurring via crossovers using these same short substrates. In these experiments, recombination was stimulated by a double-strand break generated by the HO endonuclease and can occur between completely identical (homologous) substrates or between nonidentical (homeologous) substrates. In addition, a unique feature of this system is that recombining DNA strands can be given a choice of either type of substrate. We find that interchromosomal crossover recombination with these short substrates is severely inhibited in the absence of MSH2, MSH3, or RAD1 and is relatively insensitive to the presence of mismatches. We propose that crossover recombination with these short substrates requires the products of MSH2, MSH3, and RAD1 and that these proteins have functions in recombination in addition to the removal of terminal nonhomology. We further propose that the observed insensitivity to homeology is a result of the difference in recombinational mechanism and/or the timing of the observed recombination events. These results are in contrast with those obtained using longer substrates and may be particularly relevant to recombination events between the abundant short repeated sequences that characterize the genomes of higher eukaryotes.  相似文献   

16.
The products of the yeast mismatch repair genes MSH2 and MSH3 participate in the inhibition of genetic recombination between homeologous (divergent) DNA sequences. In strains deficient for these genes, homeologous recombination rates between repeated elements are elevated due to the loss of this inhibition. In this study, the effects of these mutations were further analyzed by quantitation of mitotic homeologous recombinants as crossovers, gene conversions or exceptional events in wild-type, msh2, msh3 and msh2 msh3 mutant strains. When homeologous sequences were present as a direct repeat in one orientation, crossovers and gene conversions were elevated in msh2, msh3 and msh2 msh3 strains. The increases were greater in the msh2 msh3 double mutant than in either single mutant. When the order of the homeologous sequences was reversed, the msh2 mutation again yielded increased rates of crossovers and gene conversions. However, in an msh3 strain, gene conversions occurred at higher levels but interchromosomal crossovers were not increased and intrachromosomal crossovers were reduced relative to wild type. The msh2 msh3 double mutant behaved like the msh2 single mutant in this orientation. Control strains harboring homologous duplications were largely but not entirely unaffected in mutant strains, suggesting specificity for the mismatched intermediates of homeologous recombination. In all strains, very few (<10%) recombinants could be attributed to exceptional events. These results suggest that MSH2 and MSH3 can function differentially to control homeologous exchanges. Received: 24 December 1996 / Accepted: 24 July 1997  相似文献   

17.
We experimented a novel reporter system to analyze intrachromosomal recombination between homeologous sequences in Arabidopsis germ cell lineages. The recombination substrates used are the BAR and PAT genes which diverge by about 13% at the nucleotide level and confer resistance to the herbicide glufosinate. DNA double-strand breaks (DSBs) were generated by the I-Sce1 endonuclease to induce recombination. Loss of AtMSH2 induces a 3-fold increase of the frequency of recombination events indicating that AtMSH2 is involved in the anti-recombination activity that prevents exchange between highly diverged sequences in Arabidopsis. Molecular analysis of recombined alleles indicates that in wild type plants the single strand annealing (SSA) pathway can process more efficiently homologous 3′ ends than 3′ ends generated by resection of non-homologous overhangs. The loss of AtMSH2 disturbs this process, leading to a modification of the distribution of the BAR/PAT junctions and therefore showing that the MSH2 function is also involved in determining the structure of the recombined alleles. In addition, conversion tracts were observed in some alleles. They are shorter in MSH2 deficient plants than in wild-type, suggesting that a short-patch mismatch repair, not controlled by MSH2, could exist in Arabidopsis.  相似文献   

18.
The eukaryotic DNA mismatch repair (MMR) system contributes to maintaining the fidelity of genetic information by correcting replication errors and preventing illegitimate recombination events. This study aimed to examine the function(s) of the Arabidopsis thaliana PMS1 gene (AtPMS1), one of three homologs of the bacterial MutL gene in plants. Two independent mutant alleles (Atpms1-1 and Atpms1-2) were obtained and one of these (Atpms1-1) was studied in detail. The mutant exhibited a reduction in seed set and a bias against the transmission of the mutant allele. Somatic recombination, both homologous and homeologous, was examined using a set of reporter constructs. Homologous recombination remained unchanged in the mutant while homeologous recombination was between 1.7- and 4.8-fold higher than in the wild type. This increase in homeologous recombination frequency was not correlated with the degree of sequence divergence. In RNAi lines, a range of increases in homeologous recombination were observed with two lines showing a 3.3-fold and a 3.6-fold increase. These results indicate that the AtPMS1 gene contributes to an antirecombination activity aimed at restricting recombination between diverged sequences. Liangliang Li, Eric Dion contributed equally to this work.  相似文献   

19.
A. M. Bailis  R. Rothstein 《Genetics》1990,126(3):535-547
Null mutations in three recombination and DNA repair genes were studied to determine their effects on mitotic recombination between the duplicate AdoMet (S-adenosylmethionine) synthetase genes (SAM1 and SAM2) in Saccharomyces cerevisiae. SAM1 and SAM2, located on chromosomes XII and IV, respectively, encode functionally equivalent although differentially regulated AdoMet synthetases. These similar but not identical (homeologous) genes are 83% homologous at the nucleotide level and this identity is limited solely to the coding regions of the genes. Single frameshift mutations were introduced into the 5' end of SAM1 and the 3' end of SAM2 by restriction site ablation. The sequences surrounding these mutations differ significantly in their degree of homology to the corresponding area of the other gene. Mitotic ectopic recombination between the mutant sam genes occurs at a rate of 8.4 x 10(-9) in a wild-type genetic background. Gene conversion of the marker within the region of greater sequence homology occurs 20-fold more frequently than conversion of the marker within the region of relative sequence diversity. The relative orientation of the two genes prevents the recovery of translocations. Mitotic recombination between the sam genes is completely dependent on the DNA repair and recombination gene RAD52. A mutation in PMS1, a mismatch repair gene, causes a 4.5-fold increase in the rate of ectopic recombination. RAD1, an excision repair gene, is required to observe this increased rate of ectopic conversion. In addition, RAD1 is involved in modulating the pattern of coconversion during recombination between the homeologous sam genes. These results suggest that interactions between mismatch repair, excision repair and recombinational repair functions are involved in determining the ectopic gene conversion frequency between the sam genes.  相似文献   

20.
Duplicated genes and repetitive sequences are distributed throughout the genomes of complex organisms. The homology between related sequences can promote nonallelic (ectopic) recombination, including gene conversion and reciprocal exchange. Resolution of these events can result in translocations, deletions, or other harmful rearrangements. In yeast, ectopic recombination between sequences on nonhomologous chromosomes occurs at high frequency. Because the mammalian genome is replete with duplicated sequences and repetitive elements, high levels of ectopic exchange would cause aneuploidy and genome instability. To understand the factors regulating ectopic recombination in mice, we evaluated the effects of homology length on gene conversion between unlinked sequences in the male germline. Previously, we found high levels of gene conversion between lacZ transgenes containing 2557 bp of homology. We report here that genetic background can play a major role in ectopic recombination; frequency of gene conversion was reduced by more than an order of magnitude by transferring the transgenes from a CF1 strain background to C57BL/6J. Additionally, conversion rates decreased as the homology length decreased. Sequences sharing 1214 bp of sequence identity underwent ectopic conversion less frequently than a pair sharing 2557 bp of identity, while 624 bp was insufficient to catalyze gene conversion at significant levels. These results suggest that the germline recombination machinery in mammals has evolved in a way that prevents high levels of ectopic recombination between smaller classes of repetitive sequences, such as the Alu family. Additionally, genomic location appeared to influence the availability of sequences for ectopic recombination. Received: 12 September 1997 / Accepted: 29 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号