首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 149 毫秒
1.
本文应用陆地生态系统模型(TEM,4.0)对中国陆地生态系统在目前气候下的净初级生产力,以及在CO2浓度增加和气候变化后的净初级生产力的变化进行了预测。气候变化模型采用三种大气环流模型生成,即:GISS、GFDL和OSU模型。在当前气候条件和CO2浓度(312.5×10-6)下,TEM模型预测中国陆地生态净初级生产力为3,653TgC·a-1(1012gC·a-1)。温带常绿阔叶林是生产力最高的生物区,占有中国净初级生产力的最大比例。NPP的空间格局主要与降水量和温度的空间分布相关联。 中国陆地生态系统的年净初级生产力对CO2浓度和气候的变化敏感。在陆地区域尺度上,其年净初级生产力仅在CO2浓度上升至519×10-6的情况下可增加6.0%(219TgC·a-1)。在气候变化而无CO2浓度变化的条件下,净初级生产力的响应在GISS气候方案下表现为1.5%(54.8TgC·a-1)的降低,在GFDL-q气候方案下表现为8.4%(306.9TgC·a-1)的增加。在气候和CO2浓度均发生变化的情况下,净初级生产力有较大程度的增加,在GISS气候方案下的增加比例为18.7%(683TgC·a-1),在GFDL-q气候方案下增加23.3%(851TgC·a-1)。在空间特征方面,年净初级生产力对气候和CO2浓度变化的响应方式在一个GCM气候方案下变化十分显著。由于三个大气环流模型的不同,使得净初级生产力地理分布的反应格局产生较大差异。CO2浓度升高和气候变化的耦合作用对中国陆地生态系统净初级生产力将产生重大影响。  相似文献   

2.
全球气候变化的中国自然植被的净第一性生产力研究   总被引:170,自引:6,他引:164       下载免费PDF全文
 本文根据已建立的植物生理生态学特点与水热平衡关系的植物净第一性生产力模型对中国自然植被的净第一性生产力现状及全球变化后的自然植被的净第一性生产力进行了分析,给出了中国陆地生态系统自然植被的净第一性生产力在全球气候变化条件下的变化图景,为合理开发、利用自然资源,以及监测和预测中国陆地生态系统自然植被净第一性生产力的变化及应采取的策略提供了科学依据。  相似文献   

3.
吕富成  马建勇  曹云  延晓冬 《生态学报》2022,42(7):2810-2821
森林生态系统是陆地碳循环的重要组成部分,其固碳能力显著高于其他陆地生态系统,研究森林生态系统碳通量是认识和理解全球变化对碳循环影响的关键。碳循环模型是研究森林生态系统碳通量有效工具。以长白山温带落叶阔叶林、千烟洲亚热带常绿针叶林、鼎湖山亚热带常绿阔叶林和西双版纳热带雨林等4种中国典型森林生态系统为研究对象,利用涡度相关2003-2012年观测数据,评估FORCCHN模型对生态系统呼吸(ER),总初级生产力(GPP),净生态系统生产力(NEP)的模型效果。结果表明:(1) FORCCHN模型能够较好的模拟中国4种典型森林生态系统不同时间尺度的碳通量。落叶阔叶林和常绿针叶林ER和GPP的逐日变化模拟效果较好(ER的相关系数分别为0.94和0.92,GPP的相关系数分别为0.86和0.74);(2)4种森林生态系统碳通量季节动态模拟值和观测值显著相关(P<0.01),ER、GPP、NEP的观测值和模拟值的R2分别为0.77-0.93、0.54-0.88和0.15-0.38;模型可以很好地模拟森林生态系统不同季节碳汇(NEP>0),碳源(NEP<0)的变化规律;(3)4种森林生态系统碳通量模拟值与观测值的年际变化有很好的吻合度,但在数值大小上存在差异,模型高估了常绿阔叶林的ER和GPP,略微低估了其他3种森林生态系统ER和GPP。  相似文献   

4.
未来气候情景下中国东北森林生态系统碳收支变化   总被引:8,自引:0,他引:8  
应用FGOALS模式输出的未来气候情景数据驱动中国森林生态系统碳循环模型FORCCHN,模拟了东北地区森林生态系统碳收支未来可能的时空变化。预测结果表明:未来平衡发展情景(A1B)气候变化情景下,2003—2049年东北森林生态系统净初级生产力(NPP)和土壤呼吸在达到饱和状态前均呈波动上升趋势,将分别增加10.84%、134.43%,且土壤呼吸的增加速率远远大于NPP的增加速率;2003—2049年,东北森林生态系统可能仍将具有明显碳汇功能,但强度呈下降趋势,将下降95.64%;未来47年东北森林虽然碳汇能力在减弱,但吸碳总量还在不断增加,说明未来47年东北森林对降低大气中温室气体浓度上升以及缓解气候变化将会起到积极作用。  相似文献   

5.
定量评估区域陆地生态系统碳收支是生态系统与全球变化科学研究的重要科学问题之一。利用集成生物圈模型(IBIS)对中国陆地生态系统历史时期(1960-2006年)气候及CO2浓度变化条件下碳收支时空变异特征和发展趋势进行了模拟分析。结果表明,1960-2006年间,中国陆地生态系统净初级生产力(NPP)总量水平约为2.46 GtC/a,总体呈上升趋势,在东南及西南地区最高,其次是长白山及大小兴安岭地区,西北内陆地区的净初级生产力水平最低;1960-2006年间,中国陆地生态系统净生态系统生产力(NEP)总量水平约为0.11 GtC/a,总体呈上升趋势,绝大部分区域表现为碳汇效应,大兴安岭、小兴安岭、长白山、东南地区及西南部分地区碳汇效应较强,西北内陆区表现出弱碳源效应,温带湿润区、高原温带区和高原寒带区碳汇效应呈显著上升趋势;中国11个气候区,NPP与降水均为正相关,除了中温带湿润区、寒温带湿润区、高原温带和高原寒带外,降水是限制植被生长的主要因子。除了高原寒带外,NEP同样表现出与降水的更强相关性,与气温的相关性较弱。经验证,IBIS模型对于中国陆地生态系统碳收支的模拟结果合理,可以为科学预测生态系统的固碳潜力和制定区域碳管理政策提供科学依据。  相似文献   

6.
中国陆地生态系统碳源/汇整合分析   总被引:4,自引:0,他引:4  
赵宁  周蕾  庄杰  王永琳  周稳  陈集景  宋珺  丁键浠  迟永刚 《生态学报》2021,41(19):7648-7658
国家尺度陆地生态系统碳收支及其循环过程的研究对于提升地球系统科学与全球变化科学的科技创新能力、提高我国参与应对全球气候变化国际行动和维护国家利益的话语权、保障国家生态安全和改进生态系统管理都具有重要意义。近年来,我国已经在气候变化与陆地生态系统碳循环领域开展了大量的研究工作,主要包括国家清查、生态系统模型模拟、大气反演等手段。然而,由于大尺度陆地生态系统碳源/汇的估算存在很大的不确定性,目前尚未形成国家尺度的陆地生态系统碳源/汇的整合分析。通过搜集已发表的关于中国陆地生态系统及其组分碳源/汇的59篇文献,整合国家清查、生态系统模型模拟、大气反演3种研究手段,分析中国陆地生态系统碳源/汇大小以及时间尺度上的动态变化。结果表明,在1960s-2010s期间中国陆地生态系统碳汇整体呈上升趋势,平均为(0.213±0.030)Pg C/a,其中森林、草地、农田和灌木生态系统碳汇分别为(0.101±0.023)Pg C/a、(0.032±0.007)Pg C/a、(0.043±0.010)Pg C/a和(0.028±0.010)Pg C/a。森林生态系统中的植被碳汇远大于土壤碳汇,然而这种格局在草地和农田生态系统却相反,而且1960s-2010s期间中国主要植被类型的生态系统碳汇总体上随时间呈增加趋势。融合多源数据(地面观测、激光雷达、卫星遥感等)、多尺度数据(样地尺度、站点尺度、区域尺度)以及多手段数据(联网观测、森林清查、模型模拟),有助于全面准确地评估中国陆地生态系统碳源/汇及其对气候变化的响应。  相似文献   

7.
对现有的区域植被动态模拟模型进行了改进,使之包含了土地利用分布格局对植被和生态系统相关过程的影响。改进后的模型被用地研究中国东部南北样带(NSTEC)植被和净第一性生产力对未来气候变化的响应。模拟结果显示土地利用格局对未来气候条件下植被分布的变迁和生产力形成过程有非常显著的影响。与没有土地利用约束的情形相比较,土地利用作为限制条件缓减了植被类型之间的竞争,从而减少了模拟的样带区域内常绿阔叶林,但增加了模拟灌木和草地的分布。土地利用约束使得模拟得到的当前条件下的净第一性生产力更为接近实际情况,且未来气候条件下的生产力改变量更为可信。对未来CO2倍增条件下7个大气环流模型预测的气候情景的模拟结果表明:落叶阔叶林将显著增加,但针叶林、灌木和草原的分布将下降。未来气候条件下NSTEC样带的净第一性生产力总量将增加。预测样带北部的净第一性生产力的变化范围大于样带南部。温度变化比降水变化对样带的生产力具有更强的控制。  相似文献   

8.
对现有的区域植被动态模拟模型进行了改进,使之包含了土地利用分布格局对植被和生态系统相关过程的影响.改进后的模型被用于研究中国东部南北样带(NSTEC)植被和净第一性生产力对未来气候变化的响应.模拟结果显示土地利用格局对未来气候条件下植被分布的变迁和生产力形成过程有非常显著的影响.与没有土地利用约束的情形相比较,土地利用作为限制条件缓减了植被类型之间的竞争,从而减少了模拟的样带区域内常绿阔叶林,但增加了模拟灌木和草地的分布.土地利用约束使得模拟得到的当前条件下的净第一性生产力更为接近实际情况,且未来气候条件下的生产力改变量更为可信.对未来CO2倍增条件下7个大气环流模型预测的气候情景的模拟结果表明:落叶阔叶林将显著增加,但针叶林、灌木和草原的分布将下降.未来气候条件下NSTEC样带的净第一性生产力总量将增加.预测样带北部的净第一性生产力的变化范围大于样带南部.温度变化比降水变化对样带的生产力具有更强的控制.  相似文献   

9.
陆地生态系统碳密度格局研究概述   总被引:25,自引:0,他引:25       下载免费PDF全文
 准确了解陆地生态系统中碳密度的时空格局及其影响因子和作用机制,对于估算和预测不同类型生态系统中的植被和土壤的碳存储能力、判定碳汇、制定缓解全球变化的合理政策措施,具有重要意义。该文综述了现有研究中发现的世界陆地生态系统碳密度空间分布的地带性规律及中国陆地生态系统碳密度格局的独特特点。在全球尺度上,植被碳密度分布与植物生物量格局基本一致,除北方森林外其余大部分随纬度升高而减小;土壤碳密度则随纬度升高而增大。陆地生态系统中北方森林和热带森林的总体碳密度最高,不同的是,前者的碳主要集中在土壤中,而后者则集中在植被中。但在区域尺度上,由于气候、地形及人类活动影响,这种规律性可能会发生变化甚至不起作用。水热条件、土壤养分、生物多样性、气候和大气CO2浓度的变化以及土地利用与覆盖变化等是碳密度空间格局形成和发生变化的驱动因子。在某一特定区域,它们通过直接或间接提高植被净初级生产力,抑制呼吸和分解作用来增加陆地生态系统碳密度。综合分析特定时空条件下各因子对碳存储量的影响是解释碳密度分布现状,预测碳密度格局变化的关键,但目前的研究对各项驱动因子的作用机制、影响强度及多个因子间的相互作用仍不是很清楚,需要加强该方面的研究力度。碳密度研究中的数据获取、机理分析和过程模拟等方面仍存在很大的不确定性,因此有必要建立规范统一的碳密度测量估算系统和更为精准有效的估算模型,进行多尺度、多精度水平的综合研究。  相似文献   

10.
基于IBIS模型的东北森林净第一性生产力模拟   总被引:3,自引:0,他引:3  
王萍 《生态学报》2009,29(6):3213-3220
集成生物圈模型(the integrated biosphere simulator, IBIS)作为目前最复杂的基于动态植被模型的陆面生物模型之一,已经成为模拟大尺度(全球区域)的植被地理分布、净第一性生产力和碳平衡以及预测气候变化对陆地生态系统潜在影响的有效工具.应用IBIS模型对2004~2005年大小兴安岭的植被净第一性生产力(net primary productivity, NPP)进行了定量估算,模拟与研究了大小兴安岭森林生态系统植被NPP的空间分布格局以及不同植被类型的NPP季节变化特征,结果表明:大小兴安岭森林植被年均NPP值为494.7 gCm-2 · a-1,年吸收0.06Pg的大气碳.研究区年均NPP的空间分布主要受热量条件的影响,大兴安岭地区基本上呈现出由北向南增加的趋势,小兴安岭地区除单位面积年均NPP大于1.1kgCm-2 · a-1在小兴安岭北部孙吴和逊克地区分布外,基本上呈现出均匀分布的趋势.加强基础数据研究的同时如何根据中国的实际合理确定模型参数,使模型在我国典型生态系统中应用是值得进一步研究的.  相似文献   

11.
Aim A regional model of vegetation dynamics was enhanced to include biogeochemical cycling of nitrogen and was then applied to a forest transect in east China (FTEC) in order to investigate the responses of the transect to possible global change. Location Eastern China. Methods Biomass and nitrogen concentration of green and nongreen portions of vegetation, moisture contents of three soil layers, and total and available soil nitrogen are included as state variables in the enhanced model. The model was parameterized and validated against field observations of biomass, productivity, plant and soil nitrogen concentration, nitrogen uptake, a vegetation index derived from satellite remote sensing and digital maps of vegetation and soil distributions along a forest transect in eastern China (FTEC). The model was applied to FTEC in order to investigate the responsive characteristics of the ecosystems to global climatic change. Scenarios of climate change under doubled CO2 produced by seven general circulation models (GCM) were used to drive the model. Results The simulations indicated that the model is capable of simulating accurately potential vegetation distribution and net primary productivity under contemporary climatic conditions. The simulations for GCM‐projected future climate scenarios with doubled atmospheric CO2 concentration predicted that broadleaf forests would increase, but conifer forests, shrubs and grasses would decrease; and that deciduous forests would have the largest relative increase, but evergreen shrubs would have the largest decrease. Conclusions The overall effects of doubling CO2 and climatic changes on FTEC were to produce an increased net primary productivity (NPP) at equilibrium for all seven GCM scenarios. The inclusion of nitrogen dynamics in the model imposes more constraint on the responses of FTEC to climatic change than the previous version of the model without nitrogen dynamics. Temperature exerts a stronger control on NPP than precipitation, as indicated by the negative correlations between NPP and temperature. The southern portion of FTEC, at latitudes less than 33 °N, show much larger increases in annual NPP than in the north. However, the predicted range of NPP increases is much larger in the north than in the south.  相似文献   

12.
1981—2000年中国陆地生态系统碳通量的年际变化   总被引:26,自引:0,他引:26  
应用一个生物地球化学模型(CEVSA)估算了中国陆地净初级生产力(NPP)、土壤异养呼吸(HR)和净生态系统生产力(NEP)在1981—1998年期间对气候和大气CO2浓度变化的动态响应。结果显示,全国NPP总量波动于2.89—3.37Gt/a之间,平均值为3.09Gt C/a,年平均增长趋势约为0.32%。HR总量变化范围为2.89—3.21Gt C/a,平均值为3.02Gt C/a,年均增长0.40%。NEP总量变动于-0.32和0.25Gt C/a之间,在统计上没有明显的年际变化趋势。在研究时段内,年平均NEP约为0.07Gt C/a,表明中国陆地生态系统在气候与大气CO2浓度变化的条件下吸收了碳,为碳汇,总的吸收量为1.22Gt C,约占全球碳吸收总量的10%,与同期内美国由大气CO2和气候变化所产生的碳吸收量大致相当。尽管由于较高的年际变率,NEP在统计上没有明显的变化趋势,但NPP的增长率低于HR的增长率,说明在研究时段内,中国陆地生态系统的吸碳能力由于气候变化降低了。全国大多数地区年平均NEP接近零,明显的NEP正值区(即碳汇)出现在东北平原、西藏东南部和黄淮平原等地区,而大小兴安岭、黄土高原和云贵高原等地区NEP为负值(即碳源)。研究认为,1981~1998年期间中国气候温暖、干旱,因此估算的NEP可能低于其他时段。如果气候进入一个比较湿润的时期,碳吸收量可显著增加,但若当前干旱和暖化趋势以此为继,中国的NEP可能会变成一个负值。  相似文献   

13.
 使用LPJ-GUESS植被动态模型, 在北京山区研究了未来100 a以辽东栎(Quercus liaotungensis)为优势种的落叶阔叶林、以白桦(Betula platyphylla)为主的阔叶林和油松(Pinus tabulaeformis)为优势种的针阔混交林的碳变化, 定量分析了生态系统净初级生产力(NPP)、土壤异养呼吸(Rh)、净生态系统碳交换(NEE)和碳生物量(Carbon biomass)对两种未来气候情景(SRES A2和B2)以及相应大气CO2浓度变化情景的响应特征。结果表明: 1)未来100 a两种气候情景下3种森林生态系统的NPP和Rh均增加, 并且A2情景下增加的程度更大; 2)由于3种生态系统树种组成的不同, 未来气候情景下各自NPP和Rh增加的比例不同, 导致三者NEE的变化也相异: 100 a后辽东栎林由碳汇转变为弱碳源, 白桦林仍保持为碳汇但功能减弱, 油松林成为一个更大的碳汇; 3) 3种森林生态系统的碳生物量在未来气候情景下均增大, 21世纪末与20世纪末相比: 辽东栎林在A2情景下碳生物量增加的比例为27.6%, 大于B2情景下的19.3%; 白桦林和油松林在B2情景下碳生物量增加的比例分别为34.2%和52.2%, 大于A2情景下的30.8%和28.4%。  相似文献   

14.
Evaluating the role of terrestrial ecosystems in the global carbon cycle requires a detailed understanding of carbon exchange between vegetation, soil, and the atmosphere. Global climatic change may modify the net carbon balance of terrestrial ecosystems, causing feedbacks on atmospheric CO2 and climate. We describe a model for investigating terrestrial carbon exchange and its response to climatic variation based on the processes of plant photosynthesis, carbon allocation, litter production, and soil organic carbon decomposition. The model is used to produce geographical patterns of net primary production (NPP), carbon stocks in vegetation and soils, and the seasonal variations in net ecosystem production (NEP) under both contemporary and future climates. For contemporary climate, the estimated global NPP is 57.0 Gt C y–1, carbon stocks in vegetation and soils are 640 Gt C and 1358 Gt C, respectively, and NEP varies from –0.5 Gt C in October to 1.6 Gt C in July. For a doubled atmospheric CO2 concentration and the corresponding climate, we predict that global NPP will rise to 69.6 Gt C y–1, carbon stocks in vegetation and soils will increase by, respectively, 133 Gt C and 160 Gt C, and the seasonal amplitude of NEP will increase by 76%. A doubling of atmospheric CO2 without climate change may enhance NPP by 25% and result in a substantial increase in carbon stocks in vegetation and soils. Climate change without CO2 elevation will reduce the global NPP and soil carbon stocks, but leads to an increase in vegetation carbon because of a forest extension and NPP enhancement in the north. By combining the effects of CO2 doubling, climate change, and the consequent redistribution of vegetation, we predict a strong enhancement in NPP and carbon stocks of terrestrial ecosystems. This study simulates the possible variation in the carbon exchange at equilibrium state. We anticipate to investigate the dynamic responses in the carbon exchange to atmospheric CO2 elevation and climate change in the past and future.  相似文献   

15.
Climate change resulting from the enhanced greenhouse effect together with the direct effect of increased atmospheric CO2 concentrations on vegetation growth are expected to produce changes in the cycling of carbon in terrestrial ecosystems. Impacts will vary across Europe, and regional-scale studies are needed to resolve this variability. In this study, we used the LPJ-GUESS ecosystem model driven by a suite of regional climate model (RCM) scenarios from the European Union (EU) project PRUDENCE to estimate climate impacts on carbon cycling across Europe. We identified similarities and discrepancies in simulated climate impacts across scenarios, particularly analyzing the uncertainties arising from the range of climate models and emissions scenarios considered. Our results suggest that net primary production (NPP) and heterotrophic respiration (Rh) will generally increase throughout Europe, but with considerable variation between European subregions. The smallest NPP increases, and in some cases decreases, occurred in the Mediterranean, where many ecosystems switched from sinks to sources of carbon by 2100, mainly as a result of deteriorating water balance. Over the period 1991–2100, modeled climate change impacts on the European carbon balance ranged from a sink of 11.6 Gt C to a source of 3.3 Gt C, the average annual sink corresponding with 1.85% of the current EU anthropogenic emissions. Projected changes in carbon balance were more dependent on the choice of the general circulation model (GCM) providing boundary conditions to the RCM than the choice of RCM or the level of anthropogenic greenhouse gases emissions.  相似文献   

16.
 陆地生态系统对气候变化的响应及其脆弱性评价研究是当前全球变化领域的重要内容之一。该研究在生态系统过程模型的基础上,耦合了潜在 植被对气候变化的动态响应,模拟气候变化对潜在植被分布格局和生态系统主要功能的影响,以潜在植被的变化次数和变化方 向定义植被分布 对气候变化的敏感性和适应性,以生态系统功能特征量的年际变率及其变化趋势定义生态系统功能对气候变化的敏感性和适应性,进而对生态 系统的脆弱性进行定量评价,分析不同气候条件下我国陆地生态系统的脆弱性分布格局及其区域特点。结果表明,我国自然生态系统气候脆弱 性的总体特点为南低北高、东低西高,气候变化将会增加系统的脆弱性。采用政府间气候变化委员会排放情景特别报告国内和区域资源情景, 即IPCC-SRES-A2气候情景进行的预测模拟表明,到21世纪末我国不脆弱的生态系统比例将减少22%左右,高度脆弱和极度脆弱的生态系统所占的 比例较当前气候条件下分别减少1.3%和0.4%。气候变化对我国陆地生态系统的脆弱性分布格局影响不大。不同气候条件下,高度脆弱和极度脆 弱的自然生态系统主要分布在我国内蒙古、东北和西北等地区的生态过渡带上及荒漠-草地生态系统中。总体而言,华南及西南大部分地区的生 态系统脆弱性将随气候变化而有所增加,而华北及东北地区则有所减小。  相似文献   

17.
我国陆地植被净初级生产力变化规律及其对气候的响应   总被引:14,自引:4,他引:10  
在GIS系统的支持下,利用卫星遥感资料和地面气象观测资料,构建了基于光能利用率的植被净初级生产力(NPP)遥感模型,估算了我国陆地1982—2000年1—12月植被NPP,分析了1982—2000年我国不同植被类型NPP的季节性和年际性变化规律,基于像元空间尺度讨论了植被NPP对气候的响应关系.结果表明,我国植被NPP年内季节性变化规律明显;我国主要植被类型年NPP在1982—2000年基本呈上升趋势,增长幅度最大的是落叶针叶林,增长幅度最小的是草地;1982—2000年,NPP年际间波动最大的植被类型是常绿阔叶林,年际间波动最小的植被类型是草地.通过NPP对气候因子(降水、温度)变化的响应分析表明,我国降水对植被NPP季节性变化的驱动作用高于温度,气候因子(降水、温度)对北方植被NPP季节性变化的驱动作用高于南方;我国气候因子(降水、温度)对NPP年际变化的驱动作用(强度、方向)随季节 及纬度的不同而不同.  相似文献   

18.
Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO2. Received: 13 December 1996 / Accepted: 20 November 1997  相似文献   

19.
 植被净初级生产力及其对气候变化的响应研究是全球变化的核心内容之一。在利用内蒙古典型草原连续13年的地上生物量资料对基于遥感信息的生态系统碳循环过程CASA(Carnegie-Ames-Stanford Approach)模型验证的基础上, 分析了内蒙古典型草原1982~2002年植被净初级生产力(Net primary productivity, NPP)的时间变异及其影响因子。结果表明: 1) 1982~2002年21年间内蒙古典型草原的平均年NPP为290.23 g C·m–2·a–1, 变化范围为 145.80~502.84 g C·m–2·a–1; 2)内蒙古典型草原NPP呈增加趋势, 但没有达到显著性水平, 其中1982~1999年的18年间NPP呈现非常显著的增加趋势(p<0.01), NPP增加的直接原因是由于生长旺季生长本身增强所致; 3)内蒙古典型草原NPP与年降水量呈极显著的相关关系, 年降水量显著影响NPP的变异, 而NPP与年均温无显著相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号