首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Collagens are the most abundant proteins in marine animals and their degradation is important for the recycling of marine nitrogen. However, it is rather unclear how marine collagens are degraded because few marine collagenolytic proteases are studied in detail. Deseasins are a new type of multidomain subtilases. Here, the collagenolytic activity of deseasin MCP-01, the type example of deseasins, was studied. MCP-01 had broad substrate specificity to various type collagens from terrestrial and marine animals. It completely decomposed insoluble collagen into soluble peptides and amino acids, and was more prone to degrade marine collagen than terrestrial collagen. Thirty-seven cleavage sites of MCP-01 on bovine collagen chains were elucidated, showing the cleavage is various but specific. As the main extracellular cold-adapted protease from deep-sea bacterium Pseudoalteromonas sp. SM9913, MCP-01 displayed high activity at low temperature and alkaline range. Our data also showed that the C-terminal polycystic kidney disease (PKD) domain of MCP-01 was able to bind insoluble collagen and facilitate the insoluble collagen digestion by MCP-01. Site-directed mutagenesis demonstrated that Trp-36 of the PKD domain played a key role in its binding to insoluble collagen. It is the first time that the structure and function of a marine collagenolytic protease, deseasin MCP-01, has been studied in detail. Moreover, the PKD domain was experimentally proven to bind to insoluble protein for the first time. These results imply that MCP-01 would play an important role in the degradation of deep-sea sedimentary particulate organic nitrogen.  相似文献   

2.
Pericellular degradation of interstitial collagens is a crucial event for cells to migrate through the dense connective tissue matrices, where collagens exist as insoluble fibers. A key proteinase that participates in this process is considered to be membrane-type 1 matrix metalloproteinase (MT1-MMP or MMP-14), but little is known about the mechanism by which it cleaves the insoluble collagen. Here we report that homodimerization of MT1-MMP through its hemopexin (Hpx) domain is essential for cleaving type I collagen fibers at the cell surface. When dimerization was blocked by coexpressing either a membrane-bound or a soluble form of the Hpx domain, cell surface collagenolytic activity was inhibited in a dose-dependent manner. When MMP-13, a soluble collagenase active as a monomer in solution, was expressed as a membrane-anchored form on the cell surface, homodimerization was also required to cleave collagen. Our results introduce a new concept in that pericellular collagenolysis is regulated by correct molecular assembly of the membrane-anchored collagenase, thereby governing the directionality of the cell to migrate in tissue.  相似文献   

3.
A collagen-degrading thermophile, Geobacillus collagenovorans MO-1, extracellularly produces a collagenolytic protease with a large molecular mass. Complete nucleotide sequencing of this gene after gene cloning revealed that the collagenolytic protease is a member of the subtilisin family of serine proteases and consists of a signal sequence for secretion, a prosequence for maturation, a catalytic region, 14 direct repeats of 20 amino acids at the C terminus, and a region with unknown function intervening between the catalytic region and the numerous repeats. Since the unusual repeats are most likely to be cleaved in the secreted form of the enzyme, the intervening region was investigated to determine whether it participates in collagen binding to facilitate collagen degradation. It was found that the mature collagenolytic protease containing the intervening region at the C terminus bound collagen but not the other insoluble proteins, elastin and keratin. Furthermore, the intervening region fused with glutathione S-transferase showed a collagen-binding ability comparable to that of the mature collagenolytic protease. The collagen-binding ability was finally attributed to two-thirds of the intervening region which is rich in beta-strands and is approximately 35 kDa in molecular mass. In the collagenolytic protease from strain MO-1, hydrogen bonds most likely predominate over the hydrophobic interaction for collagen binding, since a higher concentration of NaCl released collagen from the enzyme surface but a nonionic detergent could not. To the best of our knowledge, this is the first report of a thermophilic collagenolytic protease containing the collagen-binding segment.  相似文献   

4.
Termination of RNA by nucleotides of 9-beta-D-xylofuranosyladenine   总被引:1,自引:0,他引:1  
The protease susceptibilities of recently identified cartilage collagens HMW, 1α, 2α, and 3α were investigated. Mammlian skin collagenase cleaved the 3α chain under conditions where HMW, 1α and 2α were not degraded. A tumor cell derived type V collagenolytic metalloproteinase degraded HMW, 1α and 2α, but not 3α. Plasmin or leucocyte elastase failed to significantly degrade any of the cartilage collagens when digestion was performed at 25°C (15 hours, enzyme to substrate ratio 1:100). At 36°C but not 33°C α thrombin degraded HMW, 1α and 2α, with little or no degradation of 3α. This pattern of protease susceptibility for HMW, 1α and 2α is therefore similar to type V collagen. The cleavage of 3α by skin collagenase but not by elastase is similar to type II collagen. These results suggest that HMW, 1α and 2α are part of the type V collagen family.  相似文献   

5.
The recombinant transmembrane protein type XIII collagen is shown to reside on the plasma membrane of insect cells in a 'type II' orientation. Expressions of deletion constructs showed that sequences important for the association of three alpha1(XIII) chains reside in their N- rather than C-terminal portion. In particular, a deletion of residues 63-83 immediately adjacent to the transmembrane domain abolished the formation of disulfide-bonded trimers. The results imply that nucleation of the type XIII collagen triple helix occurs at the N-terminal region and that triple helix formation proceeds from the N- to the C-terminus, in opposite orientation to that of the fibrillar collagens. Interestingly, a sequence homologous to the deleted residues was found at the same plasma membrane-adjacent location in other collagenous transmembrane proteins, suggesting that it may be a conserved association domain. The type XIII collagen was secreted into insect cell medium in low amounts, but this secretion was markedly enhanced when the cytosolic portion was lacking. The cleavage occurred in the non-collagenous NC1 domain after four arginines and was inhibited by a furin protease inhibitor.  相似文献   

6.
1. The collagen hydroxyproline in rat liver was composed of 3.5% neutral-soluble collagen, 4.9% acid-soluble collagen and 91.6% insoluble collagen. In labelling studies with [(14)C]proline in vitro, the specific radioactivities of neutral-soluble, acid-soluble and insoluble collagens in rat liver were found to be 233000, 69000 and 830d.p.m./mumol of hydroxyproline respectively after 1h. 2. During subacute carbon tetrachloride poisoning the hepatic content of insoluble collagen markedly increased, whereas those of soluble collagens did not change. During recovery from subacute poisoning hepatic contents of soluble collagens were markedly decreased. 3. After 8 weeks of carbon tetrachloride poisoning the specific radioactivities of hepatic soluble collagens increased, while that of insoluble collagen decreased. During recovery from subacute poisoning, the specific radioactivities of soluble collagens decreased to the normal range and that of insoluble collagen further decreased. 4. Hepatic collagenolytic activity solubilizing insoluble collagen, which differs from mammalian collagenase, decreased under the conditions of the subacute poisoning and also during recovery from subacute poisoning.  相似文献   

7.
The importance of conserved amino acids in the amino and carboxyl non-Gly-X-Y domains of Caenorhabditis elegans cuticle collagens was examined by analyzing site-directed mutations of the sqt-1 and rol-6 collagen genes in transgenic animals. Altered collagen genes on transgenic arrays were shown to produce appropriate phenotypes by injecting in vivo cloned mutant alleles. Equivalent alterations in sqt-1 and rol-6 generally produced the same phenotypes, indicating that conserved amino acids in these two collagens have similar functions. Serine substitutions for either of two conserved carboxyl domain cysteines produced LRol phenotypes. Substitution for both cysteines in sqt-1 also resulted in an LRol phenotype, demonstrating that disulfide bonding is important for normal function but not required for assembly. Arg-1 or Arg-4 to Cys mutations in homology block A (HBA; consensus, 1-RXRRQ-5; in the amino non-Gly-X-Y domain) caused RRol phenotypes, while the same alteration at Arg-3 had no effect, indicating that Arg-3 is functionally different from Arg-1 and Arg-4. Substitutions of Arg-4 with Ser, Leu, or Glu also produced the RRol phenotype, while Lys substitutions for Arg-1 or Arg-4 did not generate any abnormal phenotypes. His substitutions for Arg-1 or Arg-4 caused somewhat less severe RRol phenotypes. Therefore, strong positively charged residues, Arg or Lys, are required at positions 1 and 4 for normal function. The conserved pattern of arginines in HBA matches the cleavage sites of the subtilisin-like endoproteinases. HBA may be a cleavage site for a subtilisin-like protease, and cleavage may be important for cuticle collagen processing.  相似文献   

8.
Dichelobacter nodosus is the principal causative agent of ovine footrot and its extracellular proteases are major virulence factors. Virulent isolates of D. nodosus secrete three subtilisin-like serine proteases: AprV2, AprV5 and BprV. These enzymes are each synthesized as precursor molecules that include a signal (pre-) peptide, a pro-peptide and a C-terminal extension, which are processed to produce the mature active forms. The function of the C-terminal regions of these proteases and the mechanism of protease processing and secretion are unknown. AprV5 contributes to most of the protease activity secreted by D. nodosus. To understand the role of the C-terminal extension of AprV5, we constructed a series of C-terminal-deletion mutants in D. nodosus by allelic exchange. The proteases present in the resultant mutants and their complemented derivatives were examined by protease zymogram analysis, western blotting and mass spectrometry. The results showed that the C-terminal region of AprV5 is required for the normal expression of protease activity, deletion of this region led to a delay in the processing of these enzymes. D. nodosus is an unusual bacterium in that it produces three closely related extracellular serine proteases. We have now shown that one of these enzymes, AprV5, is responsible for its own maturation, and for the optimal cleavage of AprV2 and BprV, to their mature active forms. These studies have increased our understanding of how this important pathogen processes these virulence-associated extracellular proteases and secretes them into its external environment.  相似文献   

9.
The acpI gene encoding an alkaline protease (AcpI) from a deep-sea bacterium, Alkalimonas collagenimarina AC40T, was shotgun-cloned and sequenced. It had a 1,617-bp open reading frame encoding a protein of 538 amino acids. Based on analysis of the deduced amino acid sequence, AcpI is a subtilisin-like serine protease belonging to subtilase family A. It consists of a prepropeptide, a catalytic domain, and a prepeptidase C-terminal domain like other serine proteases from the genera Pseudomonas, Shewanella, Alteromonas, and Xanthomonas. Heterologous expression of the acpI gene in Escherichia coli cells yielded a 28-kDa recombinant AcpI (rAcpI), suggesting that both the prepropeptide and prepeptidase C-terminal domains were cleaved off to give the mature form. Analysis of N-terminal and C-terminal amino acid sequences of purified rAcpI showed that the mature enzyme would be composed of 273 amino acids. The optimal pH and temperature for the caseinolytic activity of the purified rAcpI were 9.0–9.5 and 45°C in 100 mM glycine–NaOH buffer. Calcium ions slightly enhanced the enzyme activity and stability. The enzyme favorably hydrolyzed gelatin, collagen, and casein. AcpI from A. collagenimarina AC40T was also purified from culture broth, and its molecular mass was around 28 kDa, indicating that the cleavage manner of the enzyme is similar to that in E. coli cells.  相似文献   

10.
Matrix metalloproteinases and collagen catabolism   总被引:5,自引:0,他引:5  
The matrix metalloproteinase (MMP)/matrixin family has been implicated in both normal tissue remodeling and a variety of diseases associated with abnormal turnover of extracellular matrix components. The mechanism by which MMPs catabolize collagen (collagenolysis) is still largely unknown. Substrate flexibility, MMP active sites, and MMP exosites all contribute to collagen degradation. It has recently been demonstrated that the ability to cleave a triple helix (triple-helical peptidase activity) can be distinguished from the ability to cleave collagen (collagenolytic activity). This suggests that the ability to cleave a triple helix is not the limiting factor for collagenolytic activity-the ability to properly orient and potentially destabilize collagen is. For the MMP family, the catalytic domain can unwind and cleave a triple-helical structure, while the C-terminal hemopexin-like domain appears to be responsible for properly orienting collagen and destabilizing it to some degree. It is also possible that exosites within the catalytic and/or C-terminal hemopexin-like domain may exclude some MMPs from cleaving collagen. Overall, it appears that many proteases of distinct mechanisms possess triple-helical peptidase activity, and that convergent evolution led to a few proteases possessing collagenolytic activity. Proper orientation and distortion of the triple helix may be the key factor for collagenolysis.  相似文献   

11.
Collagen is an important, extracellular structural protein for metazoans and provides a rich nutrient source for bacteria that possess collagen-degrading enzymes. In a symbiotic host system, collagen degradation could benefit the bacteria, but would be harmful for the eukaryotic host. Using a polyphasic approach, we investigated the presence of collagenolytic activity in the bacterial community hosted by the marine sponge Cymbastela concentrica. Functional screening for collagenase activity using metagenomic library clones (227 Mbp) and cultured isolates of sponge's bacterial community, as well as bioinformatic analysis of metagenomic shotgun-sequencing data (106,679 predicted genes) were used. The results show that the abundant members of the bacterial community contain very few genes encoding for collagenolytic enzymes, while some low-abundance sponge isolates possess collagenolytic activities. These findings indicate that collagen is not a preferred nutrient source for the majority of the members of the bacterial community associated with healthy C. concentrica, and that some low-abundance bacteria have collagenase activities that have the potential to harm the sponge through tissue degradation.  相似文献   

12.
A neutral metal protease has been identified which cleaves native type V collagen under conditions where pepsinized type IV collagen or the interstitial collagens are not significantly degraded. The enzyme is secreted into the media of cultured M50-76 reticulum cell sarcoma (malignant macrophages) and leiomyosarcoma tumor cells. Biosynthetically labeled type V collagen prepared from organ cultures of human amnion membrane is used for a routine assay of type V collagenolytic activity. The partially purified enzyme a) exists in a latent form requiring trypsin activation for maximum activity; b) has a molecular weight estimated by molecular sieve chromatography of approximately 80,000 daltons; c) is inhibited by EDTA but not phenylmethylsulfonyl fluoride; and d) produces specific cleavage products of both A and B collagen chains.  相似文献   

13.
H-ras-transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form of 72 kDa, which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on its ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors, which has the same molecular mass and has been linked to their metastatic potential. Type IV collagenase consists of three domains. Two of them, the amino-terminal domain and the carboxyl-terminal domain, are homologous to interstitial collagenase and human and rat stromelysin. The middle domain, of 175 residues, is organized into three 58-residue head-to-tail repeats which are homologous to the type II motif of the collagen-binding domain of fibronectin. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin.  相似文献   

14.
A number of proteases in the subtilisin family derived from environmental or pathogenic microorganisms have been reported to be collagenolytic serine proteases. However, their collagen degradation mechanisms remain unclear. Here, the degradation mechanism of type I collagen fibres by the S8 collagenolytic protease MCP‐01, from Pseudoalteromonas sp. SM9913, was studied. Atomic force microscopy observation and biochemical analysis confirmed that MCP‐01 progressively released single fibrils from collagen fibres and released collagen monomers from fibrils mainly by hydrolysing proteoglycans and telopeptides in the collagen fibres. Structural and mutational analyses indicated that an enlarged substrate‐binding pocket, mainly composed of loops 7, 9 and 11, is necessary for collagen recognition and that the acidic and aromatic residues on these loops form a negatively charged, hydrophobic environment for collagen binding. MCP‐01 displayed a non‐strict preference for peptide bonds with Pro or basic residues at the P1 site and/or Gly at the P1’ site in collagen. His211 is a key residue for the P1‐basic‐residue preference of MCP‐01. Our study gives structural and mechanistic insights into collagen degradation of the S8 collagenolytic protease, which is helpful in developing therapeutics for diseases with S8 collagenolytic proteases as pathogenic factors and in studying environmental organic nitrogen degradation mechanisms.  相似文献   

15.
Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen α chains sequentially, at Gly775–Leu776 in collagen II. However, the specific residues upon which collagen recognition depends within and surrounding this locus have not been systematically mapped. Using our triple-helical peptide Collagen Toolkit libraries in solid-phase binding assays, we found that MMP-13 shows little affinity for Collagen Toolkit III, but binds selectively to two triple-helical peptides of Toolkit II. We have identified the residues required for the adhesion of both proMMP-13 and MMP-13 to one of these, Toolkit peptide II-44, which contains the canonical collagenase cleavage site. MMP-13 was unable to bind to a linear peptide of the same sequence as II-44. We also discovered a second binding site near the N terminus of collagen II (starting at helix residue 127) in Toolkit peptide II-8. The pattern of binding of the free hemopexin domain of MMP-13 was similar to that of the full-length enzyme, but the free catalytic subunit bound none of our peptides. The susceptibility of Toolkit peptides to proteolysis in solution was independent of the very specific recognition of immobilized peptides by MMP-13; the enzyme proved able to cleave a range of dissolved collagen peptides.  相似文献   

16.
The function of ancillary domains and modules attached to the catalytic domain of mutidomain proteases, such as the matrix metalloproteinases (MMPs), are not well understood. The importance of discrete MMP substrate binding sites termed exosites on domains located outside the catalytic domain was first demonstrated for native collagenolysis. The essential role of hemopexin carboxyl-domain exosites in the cleavage of noncollagenous substrates such as chemokines has also been recently revealed. This article updates a previous review of the role of substrate recognition by MMP exosites in both preparing complex substrates, such as collagen, for cleavage and for tethering noncollagenous substrates to MMPs for more efficient proteolysis. Exosite domain interaction and movements—“molecular tectonics”—that are required for native collagen triple helicase activity are discussed. The potential role of collagen binding in regulating MMP-2 (gelatinase A) activation at the cell surface reveals unexpected consequences of substrate interactions that can lead to collagen cleavage and regulation of the activation and activity of downstream proteinases necessary to complete the collagenolytic cascade.  相似文献   

17.
Halolysins are subtilisin-like extracellular proteases produced by haloarchaea that possess unique protein domains and are salt dependent for structural integrity and functionality. In contrast to bacterial subtilases, the maturation mechanism of halolysins has not been addressed. The halolysin Nep is secreted by the alkaliphilic haloarchaeon Natrialba magadii, and the recombinant active enzyme has been synthesized in Haloferax volcanii. Nep contains an N-terminal signal peptide with the typical Tat consensus motif (GRRSVL), an N-terminal propeptide, the protease domain, and a C-terminal domain. In this study, we used Nep as a model protease to examine the secretion and maturation of halolysins by using genetic and biochemical approaches. Mutant variants of Nep were constructed by site-directed mutagenesis and expressed in H. volcanii, which were then analyzed by protease activity and Western blotting. The Tat dependence of Nep secretion was demonstrated in Nep RR/KK variants containing double lysine (KK) in place of the twin arginines (RR), in which Nep remained cell associated and the extracellular activity was undetectable. High-molecular-mass Nep polypeptides without protease activity were detected as cell associated and extracellularly in the Nep S/A variant, in which the catalytic serine 352 had been changed by alanine, indicating that Nep protease activity was needed for precursor processing and activation. Nep NSN 1-2 containing a modification in two potential cleavage sites for signal peptidase I (ASA) was not efficiently processed and activated. This study examined for the first time the secretion and maturation of a Tat-dependent halophilic subtilase.  相似文献   

18.
Large oligomeric proteins often contain several binding sites for different molecules and can therefore induce formation of larger protein complexes. Collagen XII, a multidomain protein with a small collagenous region, interacts with fibrillar collagens through its C-terminal region. However, no interactions to other extracellular proteins have been identified involving the non-collagenous N-terminal NC3 domain. To further elucidate the components of protein complexes present close to collagen fibrils, different extracellular matrix proteins were tested for interaction in a solid phase assay. Binding to the NC3 domain of collagen XII was found for the avian homologue of tenascin-X that in humans is linked to Ehlers-Danlos disease. The binding was further characterized by surface plasmon resonance spectroscopy and supported by immunohistochemical co-localization in chick and mouse tissue. On the ultrastructural level, detection of collagen XII and tenascin-X by immunogold labeling confirmed this finding.  相似文献   

19.
Abstract The marine fish pathogen Vibrio sp. 60 has been used as a host for heterologous expression of the Escherichia coli heat-labile enterotoxin B-subunit and derivatives carrying a C-terminal extension. In this study, a chimeric enterotoxin B-subunit with an extension corresponding to the carboxy-terminal nine amino acids -Tyr-Ala-Gly-Ala-Val-Val-Asn-Asp-Leu-cooH from the small subunit of herpes simplex virus type 1-encoded ribonucleotide reductase, is shown to be proteolytically cleaved in the extracellular medium by a single protease that is secreted by the host strain. Such protease behaves as a typical metalloprotease, being inhibited by EDTA but not by a serine protease inhibitor. Purification and amino acid composition analysis of the two proteolysis products revealed a specific cleavage of the peptide bond between amino acids glycine and alanine of the nine amino acid extension with loss of activity. The above observation is relevant for the biotechnological exploitation of Vibrio sp. 60.  相似文献   

20.
The amyloid precursor protein (APP) is a ubiquitously expressed transmembrane adhesion protein and the progenitor of amyloid-β peptides. The major splice isoforms of APP expressed by most tissues contain a Kunitz protease inhibitor domain; secreted APP containing this domain is also known as protease nexin 2 and potently inhibits serine proteases, including trypsin and coagulation factors. The atypical human trypsin isoform mesotrypsin is resistant to inhibition by most protein protease inhibitors and cleaves some inhibitors at a substantially accelerated rate. Here, in a proteomic screen to identify potential physiological substrates of mesotrypsin, we find that APP/protease nexin 2 is selectively cleaved by mesotrypsin within the Kunitz protease inhibitor domain. In studies employing the recombinant Kunitz domain of APP (APPI), we show that mesotrypsin cleaves selectively at the Arg15-Ala16 reactive site bond, with kinetic constants approaching those of other proteases toward highly specific protein substrates. Finally, we show that cleavage of APPI compromises its inhibition of other serine proteases, including cationic trypsin and factor XIa, by 2 orders of magnitude. Because APP/protease nexin 2 and mesotrypsin are coexpressed in a number of tissues, we suggest that processing by mesotrypsin may ablate the protease inhibitory function of APP/protease nexin 2 in vivo and may also modulate other activities of APP/protease nexin 2 that involve the Kunitz domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号