首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Butterfield DA  Kanski J 《Peptides》2002,23(7):1299-1309
Amyloid beta-peptide 1-42 [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress. Our laboratory combined these two aspects of AD into the Abeta-associated free radical oxidative stress model for neurodegeneration in AD brain. Abeta(1-42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems, all of which could be inhibited by free radical antioxidants. Recent studies have been directed at discerning molecular mechanisms by which Abeta(1-42)-associated free radical oxidative stress and neurotoxicity arise. The single methionine located in residue 35 of Abeta(1-42) is critical for these properties. This review presents the evidence supporting the role of methionine in Abeta(1-42)-associated free radical oxidative stress and neurotoxicity. This work is of obvious relevance to AD and provides a coupling between the centrality of Abeta(1-42) in the pathogenesis of AD and the oxidative stress under which the AD brain exists.  相似文献   

2.
Oxidative stress, manifested by protein oxidation, lipid peroxidation, DNA oxidation and 3-nitrotyrosine formation, among other indices, is observed in Alzheimer's disease (AD) brain. Amyloid beta-peptide (1-42) [Abeta(1-42)] may be central to the pathogenesis of AD. Our laboratory and others have implicated Abeta(1-42)-induced free radical oxidative stress in the neurodegeneration observed in AD brain. This paper reviews some of these studies from our laboratory. Recently, we showed both in-vitro and in-vivo that methionine residue 35 (Met-35) of Abeta(1-42) was critical to its oxidative stress and neurotoxic properties. Because the C-terminal region of Abeta(1-42) is helical, and invoking the i + 4 rule of helices, we hypothesized that the carboxyl oxygen of lle-31, known to be within a van der Waals distance of the S atom of Met-35, would interact with the latter. This interaction could alter the susceptibility for oxidation of Met-35, i.e. free radical formation. Consistent with this hypothesis, substitution of lle-31 by the helix-breaking amino acid, proline, completely abrogated the oxidative stress and neurotoxic properties of Abeta(1-42). Removal of the Met-35 residue from the lipid bilayer by substitution of the negatively charged Asp for Gly-37 abrogated oxidative stress and neurotoxic properties of Abeta(1-42). The free radical scavenger vitamin E prevented A(beta (1-42)-induced ROS formation, protein oxidation, lipid peroxidation, and neurotoxicity in hippocampal neurons, consistent with our model for Abeta-associated free radical oxidative stress induced neurodegeneration in AD. ApoE, allele 4, is a risk factor for AD. Synaptosomes from apoE knock-out mice are more vulnerable to Abeta-induced oxidative stress (protein oxidation, lipid peroxidation, and ROS generation) than are those from wild-type mice. We also studied synaptosomes from allele-specific human apoE knock-in mice. Brain membranes from human apoE4 mice have greater vulnerability to Abeta(1-42)-induced oxidative stress than brain membranes from apoE2 or E3, assessed by the same indices, consistent with the notion of a coupling of the oxidative environment in AD brain and increased risk of developing this disorder. Using immunoprecipitation of proteins from AD and control brain obtained no longer than 4h PMI, selective oxidized proteins were identified in the AD brain. Creatine kinase (CK) and beta-actin have increased carbonyl groups, an index of protein oxidation, and Glt-1, the principal glutamate transporter, has increased binding of the lipid peroxidation product, 4-hydroxy-2-nonenal (HNE). Abeta inhibits CK and causes lipid peroxidation, leading to HNE formation. Implications of these findings relate to decreased energy utilization, altered assembly of cytoskeletal proteins, and increased excitotoxicity to neurons by glutamate, all reported for AD. Other oxidatively modified proteins have been identified in AD brain by proteomics analysis, and these oxidatively-modified proteins may be related to increased excitotoxicity (glutamine synthetase), aberrant proteasomal degradation of damaged or aggregated proteins (ubiquitin C-terminal hydrolase L-1), altered energy production (alpha-enolase), and diminished growth cone elongation and directionality (dihydropyrimindase-related protein 2). Taken together, these studies outlined above suggest that Met-35 is key to the oxidative stress and neurotoxic properties of Abeta(1-42) and may help explain the apoE allele dependence on risk for AD, some of the functional and structural alterations in AD brain, and strongly support a causative role of Abeta(1-42)-induced oxidative stress and neurodegeneration in AD.  相似文献   

3.
Small model peptides containing N-terminal methionine are reported to form sulfur-centered-free radicals that are stabilized by the terminal N atom. To test whether a similar chemistry would apply to a disease-relevant longer peptide, Alzheimer's disease (AD)-associated amyloid beta-peptide 1-42 was employed. Methionine at residue 35 of this 42-mer has been shown to be a key amino acid residue involved in amyloid beta-peptide 1-42 [A beta1-42]-mediated toxicity and therefore, the pathogenesis of AD. Previous studies have shown that mutation of the methionine residue to norleucine abrogates the oxidative stress and neurotoxic properties of A beta(1-42). In the current study, we examined if the position of methionine at residue 35 is a criterion for toxicity. In doing so, we tested the effects of moving methionine to the N-terminus of the peptide in a synthetic peptide, A beta(1-42)D1M, in which methionine was substituted for aspartic acid at the N-terminus of the peptide and all subsequent residues from D1 to L34 were shifted one position towards the carboxy-terminus. A beta(1-42)D1M exhibited oxidative stress and neurotoxicity properties similar to those of the native peptide, A beta(1-42), all of which are inhibited by the free radical scavenger Vitamin E, suggesting that reactive oxygen species may play a role in the A beta-mediated toxicity. Additionally, substitution of methionine at the N-terminus by norleucine, A beta(1-42)D1Nle, completely abrogated the oxidative stress and neurotoxicity associated with the A beta(1-42)D1M peptide. The results of this study validate the chemistry reported for short peptides with N-terminal methionines in a disease-relevant peptide.  相似文献   

4.
Methionine regulates copper/hydrogen peroxide oxidation products of Abeta.   总被引:5,自引:0,他引:5  
Metal-catalysed oxidation (MCO) may play a causative role in the pathogenesis of Alzheimer's disease (AD). Amyloid beta peptide (Abeta), the major biomarker of AD, in the presence of copper ions reduces Cu(2+) to Cu(+) and catalyses the formation of H(2)O(2) that subsequently induces radicals through Fenton chemistry. Abeta is also subject to attack by free radicals, where the presence of Cu(2+) in conjunction with H(2)O(2) catalyses oxygenation, primarily at the methionine sulfur atom. This work investigates MCO of Abeta, to gain further insight into the role of oxidative stress in AD. By combining a fluorescence assay with gel electrophoresis to monitor MCO reactions of Abeta (1-28) in the presence and absence of methionine it was determined that methionine can both protect some residues against MCO and promote the oxidation of Tyr(10) specifically. Electrospray ionization mass spectrometric analysis of methionine MCO products indicated the formation of methionine sulfoxide, methionine sulfone and related hydroxylated products. Similar products could be formed from the oxidation of Met(35) of Abeta and may relate to changes in properties of the peptide following MCO.  相似文献   

5.
The major component of amyloid plaques in Alzheimer's disease (AD) is Abeta, a small peptide that has high propensity to assemble as aggregated beta-sheet structures. Using three well established techniques for studying amyloid structure, namely circular dichroism, thioflavin-T fluorescence, and atomic force microscopy, we demonstrate that oxidation of the Met-35 side chain to a methionine sulfoxide (Met-35(ox)) significantly hinders the rate of fibril formation for the 42-residue Abeta-(1-42) at physiological pH. Met-35(ox) also alters the characteristic Abeta fibril morphology and prevents formation of the protofibril, which is a key intermediate in beta-amyloidosis and the associated neurotoxicity. The implications of these results for the biological function and role of Abeta with oxidative stress in AD are discussed.  相似文献   

6.
Alzheimer's disease (AD) is neuropathologically characterized by depositions of extracellular amyloid and intracellular neurofibrillary tangles, associated with loss of neurons in the brain. Amyloid beta-peptide (Abeta) is the major component of senile plaques and is considered to have a causal role in the development and progress of AD. Several lines of evidence suggest that enhanced oxidative stress and inflammation play important roles in the pathogenesis or progression of AD. The present study aimed to investigate the protective effects of ethyl-4-hydroxy-3-methoxycinnamic acid (FAEE), a phenolic compound which shows antioxidant and anti-inflammatory activity, on Abeta(1-42)-induced oxidative stress and neurotoxicity. We hypothesized that the structure of FAEE would facilitate radical scavenging and may induce protective proteins. Abeta(1-42) decreases cell viability, which was correlated with increased free radical formation, protein oxidation (protein carbonyl, 3-nitrotyrosine), lipid peroxidation (4-hydroxy-2-trans-nonenal) and inducible nitric oxide synthase. Pre-treatment of primary hippocampal cultures with FAEE significantly attenuated Abeta(1-42)-induced cytotoxicity, intracellular reactive oxygen species accumulation, protein oxidation, lipid peroxidation and induction of inducible nitric oxide synthase. Treatment of neurons with Abeta(1-42) increases levels of heme oxygenase-1 and heat shock protein 72. Consistent with a cellular stress response to the Abeta(1-42)-induced oxidative stress, FAEE treatment increases the levels of heme oxygenase-1 and heat shock protein 72, which may be regulated by oxidative stresses in a coordinated manner and play a pivotal role in the cytoprotection of neuronal cells against Abeta(1-42)-induced toxicity. These results suggest that FAEE exerts protective effects against Abeta(1-42) toxicity by modulating oxidative stress directly and by inducing protective genes. These findings suggest that FAEE could potentially be of importance for the treatment of AD and other oxidative stress-related diseases.  相似文献   

7.
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.  相似文献   

8.
Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been assumed to be as a result of the extensive accumulation of beta-amyloid (Abeta). In addition to Abeta fibrillar assemblies, there are pre-fibrillar forms that have been shown to be neurotoxic, although their role in cholinergic degeneration is still not known. Using the cholinergic cell line SN56.B5.G4, we investigated the effect of different Abeta(1-42) aggregates on cell viability. In our model, only soluble oligomeric but not fibrillar Abeta(1-42) forms induced toxicity in cholinergic cells. To determine whether the neurotoxicity of oligomeric Abeta(1-42) was caused by its oxidative potential, we performed microarray analysis of SN56.B5.G4 cells treated either with oligomeric Abeta(1-42) or H(2)O(2). We showed that genes affected by Abeta(1-42) differed from those affected by non-specific oxidative stress. Many of the genes affected by Abeta(1-42) were present in the endoplasmic reticulum (ER), Golgi apparatus and/or otherwise involved in protein modification and degradation (chaperones, ATF6), indicating a possible role for ER-mediated stress in Abeta-mediated toxicity. Moreover, a number of genes, which are known to be involved in AD (clusterin, Slc18a3), were identified. This study provides important leads for the understanding of oligomeric Abeta(1-42) toxicity in cholinergic cells, which may account in part for cholinergic degeneration in AD.  相似文献   

9.
Amyloid beta-peptide (Abeta) plays a fundamental role in the pathogenesis of Alzheimer's disease. We recently reported that the redox state of the methionine residue in position 35 of amyloid beta-peptide (Abeta) 1-42 (Met35) strongly affects the peptide's ability to trigger apoptosis and is thus a major determinant of its neurotoxicity. Dysregulation of intracellular Ca(2+) homeostasis resulting in the activation of pro-apoptotic pathways has been proposed as a mechanism underlying Abeta toxicity. Therefore, we investigated correlations between the Met35 redox state, Abeta toxicity, and altered intracellular Ca(2+) signaling in human neuroblastoma IMR32 cells. Cells incubated for 6-24 h with 10 microM Abeta1-42 exhibited significantly increased KCl-induced Ca(2+) transient amplitudes and resting free Ca(2+) concentrations. Nifedipine-sensitive Ca(2+) current densities and Ca(v)1 channel expression were markedly enhanced by Abeta1-42. None of these effects were observed when cells were exposed to Abeta containing oxidized Met35 (Abeta1-42(Met35-Ox)). Cell pre-treatment with the intracellular Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (1 microM) or the Ca(v)1 channel blocker nifedipine (5 microM) significantly attenuated Abeta1-42-induced apoptosis but had no effect on Abeta1-42(Met35-Ox) toxicity. Collectively, these data suggest that reduced Met35 plays a critical role in Abeta1-42 toxicity by rendering the peptide capable of disrupting intracellular Ca(2+) homeostasis and thereby provoking apoptotic cell death.  相似文献   

10.
Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia, just to name a few. Alzheimer disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid beta-peptide (Abeta), and synapse loss. In this review we discuss the role of Abeta in the pathogenesis of AD and also the use of redox proteomics to identify oxidatively modified brain proteins in AD and mild cognitive impairment. In addition, redox proteomics studies in in vivo models of AD centered around human Abeta(1-42) are discussed.  相似文献   

11.
Oxidative stress, manifested by protein oxidation, lipid peroxidation, DNA oxidation and 3-nitrotyrosine formation, among other indices, is observed in Alzheimer's disease (AD) brain. Amyloid &#103 -peptide (1-42) [A &#103 (1-42)] may be central to the pathogenesis of AD. Our laboratory and others have implicated A &#103 (1-42)-induced free radical oxidative stress in the neurodegeneration observed in AD brain. This paper reviews some of these studies from our laboratory. Recently, we showed both in-vitro and in-vivo that methionine residue 35 (Met-35) of A &#103 (1-42) was critical to its oxidative stress and neurotoxic properties. Because the C-terminal region of A &#103 (1-42) is helical, and invoking the i +4 rule of helices, we hypothesized that the carboxyl oxygen of lle-31, known to be within a van der Waals distance of the S atom of Met-35, would interact with the latter. This interaction could alter the susceptibility for oxidation of Met-35, i.e. free radical formation. Consistent with this hypothesis, substitution of lle-31 by the helix-breaking amino acid, proline, completely abrogated the oxidative stress and neurotoxic properties of A &#103 (1-42). Removal of the Met-35 residue from the lipid bilayer by substitution of the negatively charged Asp for Gly-37 abrogated oxidative stress and neurotoxic properties of A &#103 (1-42). The free radical scavenger vitamin E prevented A &#103 (1-42)-induced ROS formation, protein oxidation, lipid peroxidation, and neurotoxicity in hippocampal neurons, consistent with our model for A &#103 -associated free radical oxidative stress induced neurodegeneration in AD. ApoE, allele 4, is a risk factor for AD. Synaptosomes from apoE knock-out mice are more vulnerable to A &#103 -induced oxidative stress (protein oxidation, lipid peroxidation, and ROS generation) than are those from wild-type mice. We also studied synaptosomes from allele-specific human apoE knock-in mice. Brain membranes from human apoE4 mice have greater vulnerability to A &#103 (1-42)-induced oxidative stress than brain membranes from apoE2 or E3, assessed by the same indices, consistent with the notion of a coupling of the oxidative environment in AD brain and increased risk of developing this disorder. Using immunoprecipitation of proteins from AD and control brain obtained no longer than 4 h PMI, selective oxidized proteins were identified in the AD brain. Creatine kinase (CK) and &#103 -actin have increased carbonyl groups, an index of protein oxidation, and Glt-1, the principal glutamate transporter, has increased binding of the lipid peroxidation product, 4-hydroxy-2-nonenal (HNE). A &#103 inhibits CK and causes lipid peroxidation, leading to HNE formation. Implications of these findings relate to decreased energy utilization, altered assembly of cytoskeletal proteins, and increased excitotoxicity to neurons by glutamate, all reported for AD. Other oxidatively modified proteins have been identified in AD brain by proteomics analysis, and these oxidatively-modified proteins may be related to increased excitotoxicity (glutamine synthetase), aberrant proteasomal degradation of damaged or aggregated proteins (ubiquitin C-terminal hydrolase L-1), altered energy production ( &#102 -enolase), and diminished growth cone elongation and directionality (dihydropyrimindase-related protein 2). Taken together, these studies outlined above suggest that Met-35 is key to the oxidative stress and neurotoxic properties of A &#103 (1-42) and may help explain the apoE allele dependence on risk for AD, some of the functional and structural alterations in AD brain, and strongly support a causative role of A &#103 (1-42)-induced oxidative stress and neurodegeneration in AD.  相似文献   

12.
Alzheimer's disease (AD) brain is characterized by excess deposition of the 42-amino acid amyloid beta-peptide [A(beta)(1-42)]. AD brain is under intense oxidative stress, and we have previously suggested that A(beta)(1-42) was associated with this increased oxidative stress. In addition, we previously demonstrated that the single methionine residue of A(beta)(1-42), residue 35, was critical for the oxidative stress and neurotoxic properties of this peptide. Others have shown that the C-terminal region of A(beta)(1-42) is helical in aqueous micellar solutions, including that part of the protein containing Met35. Importantly, Cu(II)-binding induces alpha-helicity in A(beta) in aqueous solution. Invoking the i + 4 rule of helices, we hypothesized that the carbonyl oxygen of Ile31 would interact with the S atom of Met35 to change the electronic environment of the sulfur such that molecular oxygen could lead to the production of a sulfuramyl free radical on Met35. If this hypothesis is correct, a prediction would be that breaking the helical interaction of Ile31 and Met35 would abrogate the oxidative stress and neurotoxic properties of A(beta)(1-42). Accordingly, we investigated A(beta)(1-42) in which the Ile31 residue was replaced with the helix-breaking amino acid, proline. The alpha-helical environment around Met35 was completely abolished as indicated by circular dichroism (CD)-spectroscopy. As a consequence, the aggregation, oxidative stress, Cu(II) reduction, and neurotoxic properties of A(beta)(1-42)I31P were completely altered compared to native A(beta)(1-42). The results presented here are consistent with the notion that interaction of Ile31 with Met35 may play an important role in the oxidative processes of Met35 contributing to the toxicity of the peptide.  相似文献   

13.
The major pathological ramification of Alzheimer's disease (AD) is accumulation of beta-Amyloid (Abeta) peptides in the brain. An emerging therapeutic approach for AD is elimination of excessive Ass peptides and preventing its re-accumulation. Immunization is the most effective strategy in removing preexisting cerebral Abetas and improving the cognitive capacity as shown in transgenic mice model of AD. However, active immunization is associated with adverse effect such as encephalitis with perivascular inflammation and hemorrhage. Details about the mechanistic aspects of propagation of these toxic effects are matter of intense enquiry as this knowledge is essential for the understanding of the AD pathophysiology. The present work aimed to study the oxidative vulnerability in the plasma, liver and brain of the inflammation-induced rats subjected to Ass immunization. Induction of inflammation was performed by subcutaneous injection of 0.5?ml of 2% silver nitrate. Our present result shows that the proinflammatory cytokines such as IL1alpha and TNFalpha are increased significantly in the inflammation-induced, Abeta1-42, Abeta25-35 treated groups and inflammation with Abeta25-35 treated group when compared to control, complete Freund's adjuvant and Abeta35-25 treated groups. These increased proinflammatory cytokines concurrently releases significant amount of free radicals in the astrocytes of respected groups. The present result shows that nitric oxide (NO) level was significantly higher (P<0.001) in plasma, liver and brain of the rat subjected to inflammation, Abeta1-42, Abeta25-35 and inflammation with Abeta25-35 injected groups when compared to control. The increased level of lipid peroxides (LPO) (P<0.001) and decreased antioxidant status (P<0.05) were observed in the plasma, liver and brain of inflammation-induced group when compared to control. Our result shows that significant oxidative vulnerability was observed in the inflammation with Ass treated rats when compared to other groups. Based on our results, we suggest that immunization of AD patients with Ass should be done with caution as the increase in Ass could trigger the brain inflammation in uncontrollable level.  相似文献   

14.
A growing body of evidence supports an important role for oxidative stress in the pathogenesis of Alzheimer's disease. Recently, a number of papers have shown a synergistic neurotoxicity of amyloid beta peptide and cupric ions. We hypothesized that complexes of cupric ions with neurotoxic amyloid beta peptides (Abeta) can stimulate copper-mediated free radical formation. We found that neurotoxic Abeta (1-42), Abeta (1-40), and Abeta (25-35) stimulated copper-mediated oxidation of ascorbate, whereas nontoxic Abeta (40-1) did not. Formation of ascorbate free radical was significantly increased by Abeta (1-42) in the presence of ceruloplasmin. Once cupric ion is reduced to cuprous ion, it can be oxidized by oxygen to generate superoxide radical or it can react with hydrogen peroxide to form hydroxyl radical. Hydrogen peroxide greatly increased the oxidation of cyclic hydroxylamines and ascorbate by cupric-amyloid beta peptide complexes, implying redox cycling of copper ions. Using the spin-trapping technique, we have shown that toxic amyloid beta peptides led to a 4-fold increase in copper-mediated hydroxyl radical formation. We conclude that toxic Abeta peptides do indeed stimulate copper-mediated oxidation of ascorbate and generation of hydroxyl radicals. Therefore, cupric-amyloid beta peptide-stimulated free radical generation may be involved in the pathogenesis of Alzheimer's disease.  相似文献   

15.
Oxidative stress is strongly implicated in the progressive decline of cognition associated with aging and neurodegenerative disorders. In the brain, free radical-mediated oxidative stress plays a critical role in the age-related decline of cellular function as a result of the oxidation of proteins, lipids, and nucleic acids. A number of studies indicate that an increase in protein oxidation and lipid peroxidation is associated with age-related neurodegenerative diseases and cellular dysfunction observed in aging brains. Oxidative stress is one of the important factors contributing to Alzheimer's disease (AD), one of whose major hallmarks includes brain depositions of amyloid beta-peptide (Abeta) derived from amyloid precursor protein (APP). Mutation in APP and PS-1 genes, which increases production of the highly amyloidogenic amyloid beta-peptide (Abeta42), is the major cause of familial AD. In the present study, protein oxidation and lipid peroxidation in the brain from knock-in mice expressing human mutant APP and PS-1 were compared with brain from wild type, as a function of age. The results suggest that there is an increased oxidative stress in the brain of wild-type mice as a function of age. In APP/PS-1 mouse brain, there is a basal increase (at 1 month) in oxidative stress compared to the wild type (1 month), as measured by protein oxidation and lipid peroxidation. In addition, age-related elevation of oxidative damage was observed in APP/PS-1 mice brain compared to that of wild-type mice brain. These results are discussed with reference to the importance of Abeta42-associated oxidative stress in the pathogenesis of AD.  相似文献   

16.
Alzheimer's disease (AD) is a complex neurodegenerative disorder with a progressive mental deterioration manifested by memory loss. No definite etiology has been established for AD to date. Amyloid beta (Abeta) protein plays a central role in the pathology of AD through multiple pathways like oxidative stress, apoptosis etc. Recently, our laboratory first time has evidenced localization of Abeta immunoreactivity in apoptotic nuclei of degenerating AD brain hippocampal neurons and also showed that Abeta (1-42) binds and alters the helicity of DNA. The present study provided fundamental data on DNA nicking induced by Abeta. The results showed that Abeta (1-42) has DNA nicking activity similar to nucleases. Further, magnesium ion (1mM) enhanced DNA nicking activity of Abeta. The data on Abeta solution stability on DNA nicking revealed that the oligomers of Abeta (1-42) peptides showed more DNA nicking activity compared to monomers and fibrillar forms. The nuclease specific inhibitor aurintricarboxylic acid prevented the DNA nicking property of Abeta. Transmission electron microscopy (TEM) studies revealed that Abeta causes open circular and linear forms in supercoiled DNA and also clearly evidenced the physical association of protein-DNA complex. The above data indicated that Abeta mimics endonuclease behavior. Our finding of DNA nicking activity of Abeta peptides has biological significance in terms of causing direct DNA damage.  相似文献   

17.
Alzheimer's disease (AD) brains are characterized by extensive oxidative stress. Additionally, large depositions of amyloid beta-peptide (Abeta) are observed, and many researchers opine that Abeta is central to the pathogenesis of AD. Our laboratory combined these two observations in a comprehensive model for neurodegeneration in AD brains centered around Abeta-induced oxidative stress. Given the oxidative stress in AD and its potentially important role in neurodegeneration, considerable research has been conducted on the use of antioxidants to slow or reverse the pathology and course of AD. One source of antioxidants is the diet. This review examines the literature of the effects of endogenous and exogenous, nutritionally-derived antioxidants in relation to AD. In particular, studies of glutathione and other SH-containing antioxidants, vitamins, and polyphenolic compounds and their use in AD and modulation of Abeta-induced oxidative stress and neurotoxicity are reviewed.  相似文献   

18.
Quercetin, a flavonoid found in various foodstuffs, has antioxidant properties and increases glutathione (GSH) levels and antioxidant enzyme function. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and neurotoxicity. We aimed to investigate the protective effects of quercetin on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons in the present study. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (protein-bound 4-hydroxy-2-nonenal). Pretreatment of primary hippocampal cultures with quercetin significantly attenuated Abeta(1-42)-induced cytotoxicity, protein oxidation, lipid peroxidation and apoptosis. A dose-response study suggested that quercetin showed protective effects against Abeta(1-42) toxicity by modulating oxidative stress at lower doses, but higher doses were not only non-neuroprotective but also toxic. These findings provide motivation to test the hypothesis that quercetin may provide a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.  相似文献   

19.
Inhibition of the accumulation of amyloid beta-peptide (Abeta) and the formation of beta-amyloid fibrils (fAbeta) from Abeta, as well as the destabilization of preformed fAbeta in the central nervous system would be attractive therapeutic targets for the treatment of Alzheimer's disease (AD). Many studies have demonstrated that oxidative damage plays a central role in AD pathogenesis, as well as Parkinson disease (PD). Among the antioxidant strategies proposed, increasing evidence points to the possibility of achieving neuroprotection by dopamine agonists, as well as monoamine oxidase B (MAO-B) inhibitors. Actually, the beneficial effect of selegiline, a MAO-B inhibitor, in AD has been noted in several clinical studies. On the reverse, antimuscarinic agents have been reported to accelerate beta-amyloidosis and senile plaque formation in PD. Using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies, we examined the effects of anti-Parkinsonian agents, dopamine, levodopa, pergolide, bromocriptine, selegiline, and trihexyphenidyl on the formation, extension, and destabilization of fAbeta(1-40) and fAbeta(1-42) at pH 7.5 at 37 degrees C in vitro. The anti-Parkinsonian agents other than trihexyphenidyl dose-dependently inhibited fAbeta formation from Abeta(1-40) and Abeta(1-42), as well as their extension. Moreover, these agents dose-dependently destabilized preformed fAbetas. The overall activity of the molecules examined was in the order of: dopamine>selegiline>levodopa=pergolide>bromocriptine. Although the exact mechanism of the anti-amyloidogenic activity of these agents is unclear, these and other structurally related compounds could be key molecules for the development of therapeutics for AD and other conformational diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号