首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Human epidermal keratinocytes express under various growth conditions a total of at least nine keratins that can be divided into two subfamilies. Subfamily A comprises 40-, 46-, 48-, 50-/50'-, and 56.5-kilodalton (kd) keratins which are relatively acidic (pI less than 5.5) and, with the exception of 46-kd keratin, are recognized by AE1 monoclonal antibody. Subfamily B comprises 52-, 56-, 58-, and 65-67-kd keratins which are relatively basic (pI greater than 6) and are recognized by AE3 monoclonal antibody. Within each keratin subfamily, there is a constant member (50-/50'- and 58-kd keratins of the subfamilies A and B, respectively) that is always expressed. The other seven keratins of both subfamilies are variable members whose expression depends upon the cellular differentiated state, which is in turn modulated by the growth environment. The 56.5-kd keratin (subfamily A) and the 65-67-kd keratins (subfamily B) are coordinately expressed during keratinization. In contrast, the 40-, 46-, and 48-kd keratins (subfamily A) and the 52- and 56-kd keratins (subfamily B) are characteristic of cultured epidermal cells forming nonkeratinized colonies. These results demonstrate that human epidermal keratins can be classified according to their reactivity with monoclonal antikeratin antibodies, isoelectric point, and mode of expression. The classification of keratins into various subgroups may have important implications for the mechanisms of epidermal differentiation, the evolution of keratin heterogeneity, and the use of keratin markers for tumor diagnosis.  相似文献   

2.
We have prepared three monoclonal antibodies against human epidermal keratins. These antibodies were highly specific for keratins and, in combination, recognized all major epidermal keratins of several mammalian species. We have used these antibodies to study the tissue distribution of epidermis-related keratins. In various mammalian epithelia, the antibodies recognized seven classes of keratins defined by their immunological reactivity and size. The 40, 46 and 52 kilodalton (kd) keratin classes were present in almost all epithelia; the 50 kd and 58 kd keratin classes were detected in all stratified squamous epithelia, but not in any simple epithelia; and the 56 kd and 65-67 kd keratin classes were unique to keratinized epidermis. Thus the expression of specific keratin classes appeared to correlate with different types of epithelial differentiation (simple versus stratified; keratinized versus nonkeratinized).  相似文献   

3.
E Fuchs  H Green 《Cell》1980,19(4):1033-1042
Cells of the inner layers of the epidermis contain small keratins (46-58K), whereas the cells of the outer layers contain large keratins (63-67K) in addition to small ones. The changes in keratin composition that take place within each cell during the course of its terminal differentiation result largely from changes in synthesis. Cultured epidermal cells resemble cells of the inner layers of the epidermis in synthesizing only small keratins. The cultured cells possess translatable mRNA only for small keratins, whereas mRNA extracted from whole epidermis can be translated into both large and small keratins. As no synthesis takes place in the outermost layer of the epidermis (stratum corneum), the keratins of this layer must be synthesized earlier, but in some cases they then become smaller: this presumably occurs by post-translational processing of the molecules during the final stages of differentiation. Stratified squamous epithelia of internal organs do not form a typical stratum corneum and do not make the large keratins characteristic of epidermis. Their keratins are also different from those of cultured keratinocytes, implying that they have embarked on an alternate route of terminal keratin synthesis.  相似文献   

4.
E Fuchs  H Green 《Cell》1981,25(3):617-625
Vitamin A is known to exert an important influence on epithelial differentiation. The fetal calf serum supplement of cell-culture medium contains enough of the vitamin to affect the differentiation of cultured keratinocytes derived from epidermis and from other stratified squamous epithelia. The cellular and molecular properties of the cultures are altered when the medium is supplemented with serum from which the vitamin A has been removed by solvent extraction (delipidized serum). Cell motility is reduced, the adhesiveness of cells increases and pattern formation is prevented. In both epidermal and conjunctival keratinocytes, removal of vitamin A leads to the synthesis of a 67 kd keratin characteristic of terminally differentiating epidermis and to much reduced synthesis of the 52 kd and 40 kd keratins typical of conjunctiva. These changes, both cellular and molecular, are reversed by the addition of retinyl acetate to the medium containing delipidized serum. Cell motility and pattern formation are restored, and detachment of the most mature cells from the surface of the stratified epithelium is promoted. Synthesis of the 67 kd keratin is prevented and the synthesis of the 40 and 52 kd keratins is stimulated. The nature of the keratins synthesized is regulated by the concentration of vitamin A, and each cell type adjusts its synthesis differently at a given vitamin concentration.  相似文献   

5.
In contrast to the simplified keratin content of bovine, rabbit, and rat esophageal epithelium (composed mainly of a 57 and 46 or 51 kD keratin, depending on the animal species), human esophageal epithelium contained a quantitatively different array of keratin proteins, ranging in molecular weight from 37 to 61 kD. The pattern of keratin proteins from human esophageal epithelium differed qualitatively and quantitatively from that of human epidermis. Human esophageal epithelium lacked the 63, 65, and 67 kD keratins characteristic of human epidermis, consistent with the absence of a granular layer and an anucleate stratum corneum. Moreover, human esophageal epithelium contained a distinctive 61 kD keratin protein which was either not present or present in only small amounts in human epidermis and variable amounts of a 37 kD keratin. Whereas the 56, 59, and 67 kD keratins were the most abundant keratins in human epidermis, the 52, 57, and 61 kD keratins predominated in human esophageal epithelium. During in vitro cultivation, both human epidermal and esophageal keratinocytes produce colonies which are stratified, but the morphologic appearance of these cultured epithelia differs. Only cultured human epidermal keratinocytes contain keratohyalin granules in the outermost layers and a prominent 67 kD keratin on immunoprecipitation. Otherwise the keratin contents appear similar. In conclusion, human esophageal epithelium exhibited intertissue and interspecies differences in the pattern of keratin proteins. During in vitro cultivation, human esophageal keratinocytes retained some aspects of their distinctive program of differentiation.  相似文献   

6.
Summary Tracheas from vitamin A-deficient hamsters in organ culture in vitamin A-free medium developed squamous metaplasia. Addition of retinyl acetate to the medium prevented squamous metaplasia and a mucociliary epithelium was maintained. Indirect immunofluorescent staining with antikeratin antibodies AE1 and AE3 indicated positive reactions with epithelium of tracheas either cultured in vitamin A-free or retinyl acetate (RAc)-containing medium. The “stratum corneum”-like squames in metaplastic tracheas were strongly stained by AE3. Immunoprecipitation of cytoskeletal extracts from [35S]methionine labeled tracheas with a multivalent keratin antiserum indicated that the concentration of keratins synthesized in tracheas cultured in vitamin A-free medium was greater than that observed in tracheas cultured in the presence of RAc. In addition, new species of keratin were expressed in tracheas cultured in RAc-free medium. Alterations in the program of keratin synthesis were clearly detectable after 1 d in vitamin A-free medium, even though squamous metaplasia was not yet obvious. Squamous tracheas were shown by immunoblot analysis to contain keratins of 50, 48, 46.5, and 45 kilodalton (kd) detected with AE1; and 58, 56, and 52 kd detected with AE3. Immunoblot analysis with monospecific antimouse keratin sera also demonstrated the presence of 60, 55, and 50 kd keratins in the metaplastic tracheas. All these various species of keratins were either absent or present in much reduced quantity in mucociliary tracheas in RAc-containing medium. Interestingly, the induction of squamous metaplasia in tracheal epithelium did not result in the expression of the 59 and 67 kd keratins which are characteristically expressed in the differentiated layers of the epidermis. Therefore, this study shows that squamous metaplasia of tracheas due to vitamin A-free cultivation is accompanied by an increase in keratin synthesis as well as by the appearance of keratin species not normally present in mucociliary tracheal epithelium.  相似文献   

7.
Differentiation of the epidermis during embryonic rabbit development was found to be accompanied by dramatic changes in keratin proteins. Immunofluorescent labeling with keratin antiserum revealed that the undifferentiated epithelium of 12-d embryos was already committed to making keratin proteins. At 18 d of embryogenesis, the epithelium contained keratin proteins in the molecular weight range of 40,000-59,000. The stratification of the epithelium into two cell layers at 20 d of development coincided with the appearance of a 65-kdalton keratin. When a thick stratum corneum developed at 29 d, several additional keratins became prominent, most notably the large keratins (61- and 64-kdalton) and a 54-kdalton keratin. In addition, the 40-kdalton keratin, which had been present in earlier embryonic epidermis, disappeared. Newborn epidermis resembled that of a 29-d embryonic epidermis, with the exception of the appearance or increase in concentration of two more keratin species (46- and 50-kdalton). In vitro culturing of keratinocytes from 12- and 14-d embryonic skin demonstrated that these cells contained essentially the same keratin profiles as the undifferentiated epithelium of 18-d embryos (40-59 kdalton). Keratinocytes grown from older embryos contained increased amounts of keratin, similar to the in vivo situation, but did not synthesize the high molecular weight keratins. The changes observed during embryonic epidermal differentiation appear to be recapitulated during the sequential maturation steps of adult epidermis.  相似文献   

8.
Human epidermal cells grown in culture synthesize abundant keratins. These keratins are similar to those of stratum corneum of human epidermal callus in their insolubility in dilute aqueous buffers, their molecular weight range of 40,000 to 60,000, their immunolgical reactivity, and their ability to assemble into 80 A tonofilaments in vitro; but there are differences in the molecular weights of some of the proteins, the number of components, and their charge heterogeneity, related at least in part to phosphorylation. About 30% of all the proteins of living cultured keratinocytes consists of keratins, compared with over 85% of stratum corneum. All the keratins of human stratum corneum were found to be cross-linked by intermolecular disulfide bonds while most keratins of the living cells were not. As the cells mature in Methocel-stabilized suspension culture, their keratins become increasingly disulfide cross-linked. When uncross-linked tonofilaments of living keratinocytes are dissolved in 8 M urea and the filaments reconstituted in vitro their keratins become disulfide cross-linked under aerobic conditions and consequently insoluble in solutions of 8 M urea or sodium dodecyl sulfate. The results indicate that the uncross-linked state of the keratins in living cells is due to the reducing intracellular environment and not to a precursor state related to the primary structure of the proteins. The disulfide cross-links stabilizing the keratin filaments must be distinguished from the epsilon-(gamma-glutamyl)lysine cross-links stabilizing the cornified cell envelope.  相似文献   

9.
The polypeptide composition of epidermal keratin varies in disease. To better understand the biological meaning of these variations, we have analyzed keratins from a number of human epidermal diseases by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The results reveal a continuous spectrum of keratin expression ranging from one closely resembling the normal in vivo pattern to one almost identical to cultured epidermal keratinocytes. Specifically, a 50-kilodalton (kd) (AE1-positive) and a 58-kd (AE3-positive) keratin are present in all diseases, supporting the concept that they represent "permanent" markers for keratinocytes. A 56.5-kd (AE1) and a 65-67-kd (AE3) keratin, previously shown to be markers for keratinization, are expressed only by lesions retaining a keratinized morphology. A 48-kd (AE1) and a 56-kd (AE3) keratin are present in all hyperproliferative (para- or nonkeratinized) disorders, but not in normal abdominal epidermis or in ichthyosis vulgaris which is a nonhyperproliferative disease. These two keratins have previously been found in various nonepidermal keratinocytes undergoing hyperproliferation, suggesting that these keratins are not epidermis-specific and may represent markers for hyperproliferative keratinocytes in general. In various epidermal diseases, there is a reciprocal expression of the (keratin) markers for hyperproliferation and keratinization, supporting the mutual exclusiveness of the two cellular events. Moreover, our results indicate that, as far as keratin expression is concerned, cultured human epidermal cells resemble and thus may be regarded as a model for epidermal hyperplasia. Finally, the apparent lack of any major, disease-specific keratin changes in the epidermal disorders studied so far implies that keratin abnormalities probably represent the consequence, rather than the cause, of these diseases.  相似文献   

10.
Transformation of human epidermal keratinocytes by the oncogenic virus SV40 is a stage-specific process in which normal patterns of differentiation are progressively altered over time following infection. Within the context of this scheme, we examined the keratins produced by the infected cells. Immunofluorescence studies indicated that viral infection led to the formation of variant cells visibly lacking the normal keratin cytoskeleton after about 10-15 serial passages (60-90 cell generations) post infection. Analyses of variant cell formation in clonal populations grown on palladium islands revealed that the variants were derived within 2-3 cell divisions from cells containing an apparently normal keratin cytoskeleton, but that variant formation depended upon cell density. Immunoprecipitation of 35S-methionine labelled keratins from the infected keratinocytes revealed a gradual loss of the normal 46, 50, 56 and 58Kd keratin species over a period of many months after infection. The loss of the normal keratins was accompanied by the appearance of at least two species in the 48-52Kd size range not present in uninfected cells and the enhancement of a third, 40Kd, protein quite early after infection. Analysis of the altered keratin patterns on two-dimensional acrylamide gels using either isoelectric focusing (IEF) or non-equilibrium pH gradient electrophoresis (NEPHG) along the first dimension showed that the infected cells produced basic keratins which increased in relative abundance as cells became more transformed with serial passage including at least five isoelectric forms not seen in uninfected cells. Translation of poly A+ RNAs from the infected cells indicated that the altered keratin synthesis probably reflects changes in the translatable mRNA pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号