首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The mechanical characteristics of cancellous bone at the upper femoral region   总被引:10,自引:0,他引:10  
Mechanical behaviour of trabecular bone at the upper femoral region of human bones has been studied by compression tests on trabecular bone specimens removed from normal femora obtained at autopsy. Compression tests were performed along three different axes of loading on wet specimens and high loading rates. Femoral head specimens proved to be the strongest for any axis of loading.

Large variation in compressive strength and modulus of elasticity is seen within and between femoral bone samples. Anisotropy and differences in anisotropy for the different regions have been observed. A significant correlation between mechanical properties (σ max − E) and bone mineral content of the specimen was found.

Tests on whole bone structures demonstrate that removal of the central part of the trabecular bone at the proximal femur reduces the strength for impact loading considerably (± 50%).  相似文献   


2.
The prospects for the use of quantitative computed tomography (QCT) for evaluation of mechanical properties of tibial trabecular bone were investigated. Computed tomography (CT) data from the proximal tibial epi- and metaphysis of six human cadaver knees were correlated with mechanical data obtained from compression tests and penetration strength measurements. In addition CT and intraoperative penetration data were compared in 20 patients. If spatial agreement between CT and mechanical measurement sites is optimized, close correlations are found between the relative linear attenuation coefficient determined by CT and the ultimate strength (r = 0.84), the yield strength (r = 0.85), the elastic modulus (r = 0.78), the ultimate energy absorption (r = 0.83), the yield energy absorption (r = 0.81), and the penetration strength (r = 0.82). It is concluded that these correlations are sufficient to make QCT a valuable tool for non-invasive evaluation of the spatial distribution of bone properties in several clinical applications.  相似文献   

3.
Trabecular plates play an important role in determining elastic moduli of trabecular bone. However, the relative contribution of trabecular plates and rods to strength behavior is still not clear. In this study, individual trabeculae segmentation (ITS) and nonlinear finite element (FE) analyses were used to evaluate the roles of trabecular types and orientations in the failure initiation and progression in human vertebral trabecular bone. Fifteen human vertebral trabecular bone samples were imaged using micro computed tomography (μCT), and segmented using ITS into individual plates and rods by orientation (longitudinal, oblique, and transverse). Nonlinear FE analysis was conducted to perform a compression simulation for each sample up to 1% apparent strain. The apparent and relative trabecular number and tissue fraction of failed trabecular plates and rods were recorded during loading and data were stratified by trabecular orientation. More trabecular rods (both in number and tissue fraction) failed at the initiation of compression (0.1–0.2% apparent strain) while more plates failed around the apparent yield point (>0.7% apparent strain). A significant correlation between plate bone volume fraction (pBV/TV) and apparent yield strength was found (r2=0.85). From 0.3% to 1% apparent strain, significantly more longitudinal trabecular plate and transverse rod failed than other types of trabeculae. While failure initiates at rods and rods fail disproportionally to their number, plates contribute significantly to the apparent yield strength because of their larger number and tissue volume. The relative failed number and tissue fraction at apparent yield point indicate homogeneous local failure in plates and rods of different orientations.  相似文献   

4.
Microdamage occurs in trabecular bone under normal loading, which impairs the mechanical properties. Architectural degradation associated with osteoporosis increases damage susceptibility, resulting in a cumulative negative effect on the mechanical properties. Treatments for osteoporosis could be targeted toward increased bone mineral density, improved architecture, or repair and prevention of microdamage. Delineating the relative roles of damage and architectural degradation on trabecular bone strength will provide insight into the most beneficial targets. In this study, damage was induced in bovine trabecular bone samples by axial compression, and the effects on the mechanical properties in shear were assessed. The damaged shear modulus, shear yield stress, ultimate shear stress, and energy to failure all depended on induced damage and decreased as the architecture became more rod-like. The changes in ultimate shear strength and toughness were proportional to the decrease in shear modulus, consistent with an effective decrease in the cross-section of trabeculae based on cellular solid analysis. For typical ranges of bone volume fraction in human bone, the strength and toughness were much more sensitive to decreased volume fraction than to induced mechanical damage. While ultimately repairing or avoiding damage to the bone structure and increasing bone density both improve mechanical properties, increasing bone density is the more important contributor to bone strength.  相似文献   

5.
Study of the behavior of trabecular bone at strains below 0.40 percent is of clinical and biomechanical importance. The goal of this work was to characterize, with respect to anatomic site, loading mode, and apparent density, the subtle concave downward stress-strain nonlinearity, that has been observed recently for trabecular bone at these strains. Using protocols designed to minimize end-artifacts, 155 cylindrical cores from human vertebrae, proximal tibiae, proximal femora, and bovine proximal tibiae were mechanically tested to yield at 0.50 percent strain per second in tension or compression. The nonlinearity was quantified by the reduction in tangent modulus at 0.20 percent and 0.40 percent strain as compared to the initial modulus. For the pooled data, the mean +/- SD percentage reduction in tangent modulus at 0.20 percent strain was 9.07+/- 3.24 percent in compression and 13.8 +/- 4.79 percent in tension. At 0.40 percent strain, these values were 23.5 +/- 5.71 and 35.7+/- 7.10 percent, respectively. The magnitude of the nonlineari't depended on both anatomic site (p < 0.001) and loading mode (p < 0.001), and in tension was positively correlated with density. Calculated values of elastic modulus and yield properties depended on the strain range chosen to define modulus via a linear curve fit (p < 0.005). Mean percent differences in 0.20 percent offset yield strains were as large as 10.65 percent for some human sites. These results establish that trabecular bone exhibits nonlinearity at low strains, and that this behavior can confound intersite comparisons of mechanical properties. A nonlinear characterization of the small strain behavior of trabecular bone was introduced to characterize the initial stress-strain behavior more thoroughly.  相似文献   

6.
Osteoporosis leads to an increased risk of bone fracture. While bone density and architecture can be assessed in vivo with increasing accuracy using CT and MRI, their relationship with the critical mechanical properties at various anatomical sites remain unclear. The objective of this study was to quantify the quasi-static compressive mechanical properties of human trabecular bone among different skeletal sites and compare their relationships with bone volume fraction and a measure of microstructural anisotropy called fabric. Over 600 trabecular bone samples from six skeletal sites were assessed by and tested in uniaxial compression. Bone volume fraction correlated positively with elastic modulus, yield stress, ultimate stress, and the relationships depended strongly on skeletal site. The account of fabric improved these correlations substantially, especially when the data of all sites were pooled together, but the fabric–mechanical property relationships remained somewhat distinct among the anatomical sites. The study confirms that, beyond volume fraction, fabric plays an important role in determining the mechanical properties of trabecular bone and should be exploited in mechanical analysis of clinically relevant sites of the human skeleton.  相似文献   

7.
Individual trabecula segmentation (ITS) technique can decompose the trabecular bone network into individual trabecular plates and rods and is capable of quantifying the plate/rod-related microstructural characteristics of trabecular bone. This novel technique has been shown to be able to provide in-depth insights into micromechanics and failure mechanisms of human trabecular bone, as well as to distinguish the fracture status independent of area bone mineral density in clinical applications. However, the plate/rod microstructural parameters from ITS have never been correlated to experimentally determined mechanical properties of human trabecular bone. In this study, on-axis cylindrical trabecular bone samples from human proximal tibia (n=22), vertebral body (n=10), and proximal femur (n=21) were harvested, prepared, scanned using micro computed-tomography (µCT), analyzed with ITS and mechanically tested. Regression analyses showed that the plate bone volume fraction (pBV/TV) and axial bone volume fraction (aBV/TV) calculated by ITS analysis correlated the best with elastic modulus (R2=0.96–0.97) and yield strength (R2=0.95–0.96). Trabecular plate-related microstructural parameters correlated highly with elastic modulus and yield strength, while most rod-related parameters were found inversely and only moderately correlated with the mechanical properties. In addition, ITS analysis also identified that trabecular bone at human femoral neck had the highest trabecular plate-related parameters while the other sites were similar with each other in terms of plate–rod microstructure.  相似文献   

8.
Variations in yield strains for trabecular bone within a specific anatomic site are only a small fraction of the substantial variations that exist for elastic modulus and strength, and yet the source of this uniformity is not known. Our goal was to investigate the underlying mechanisms by using high-resolution, materially nonlinear finite element models of 12 human femoral neck trabecular bone specimens. The finite element models, used to obtain apparent yield strains in both tension and compression, assumed that the tissue-level yield strains were the same across all specimens. Comparison of the model predictions with the experimental data therefore enabled us to isolate the combined roles of volume fraction and architecture from the role of tissue material properties. Results indicated that, for both tensile and compressive loading, natural variations in volume fraction and architecture produced a negligible coefficient of variation (less than 3%) in apparent yield strains. Analysis of tissue-level strains showed that while bending of individual trabeculae played only a minor role in the apparent elastic behavior, the combined effects of this bending and tissue-level strength asymmetry produced apparent-level failure strains in compression that were 14% lower than those at the tissue level. By contrast, tissue and apparent-level yield strains were equivalent for tensile loading. We conclude that the uniformity of apparent yield strains is primarily the result of the highly oriented architecture that minimizes bending. Most of the variation that does occur is the result of the non-uniformity of the tissue-level yield strains.  相似文献   

9.
The ability to determine trabecular bone tissue elastic and failure properties has biological and clinical importance. To date, trabecular tissue yield strains remain unknown due to experimental difficulties, and elastic moduli studies have reported controversial results. We hypothesized that the elastic and tensile and compressive yield properties of trabecular tissue are similar to those of cortical tissue. Effective tissue modulus and yield strains were calibrated for cadaveric human femoral neck specimens taken from 11 donors, using a combination of apparent-level mechanical testing and specimen-specific, high-resolution, nonlinear finite element modeling. The trabecular tissue properties were then compared to measured elastic modulus and tensile yield strain of human femoral diaphyseal cortical bone specimens obtained from a similar cohort of 34 donors. Cortical tissue properties were obtained by statistically eliminating the effects of vascular porosity. Results indicated that mean elastic modulus was 10% lower (p<0.05) for the trabecular tissue (18.0+/-2.8 GPa) than for the cortical tissue (19.9+/-1.8 GPa), and the 0.2% offset tensile yield strain was 15% lower for the trabecular tissue (0.62+/-0.04% vs. 0.73+/-0.05%, p<0.001). The tensile-compressive yield strength asymmetry for the trabecular tissue, 0.62 on average, was similar to values reported in the literature for cortical bone. We conclude that while the elastic modulus and yield strains for trabecular tissue are just slightly lower than those of cortical tissue, because of the cumulative effect of these differences, tissue strength is about 25% greater for cortical bone.  相似文献   

10.
Within the context of improving knowledge of the structure-function relations for trabecular bone for cyclic loading, we hypothesized that the S-N curve for cyclic compressive loading of trabecular bone, after accounting for differences in monotonic strength behavior, does not depend on either site or species. Thirty-five cores of fresh-frozen elderly human vertebral trabecular bone, harvested from nine donors (mean+/-S.D., age=74+/-17 years), were biomechanically tested in compression at sigma/E(0) values (ratio of applied stress to pre-fatigue elastic modulus) ranging from 0.0026 to 0.0070, and compared against literature data (J. Biomech. Eng. 120 (1998) 647-654) for young bovine tibial trabecular bone (n=37). As reported for the bovine bone, the number of cycles to failure for the human vertebral bone was related to sigma/E(0) by a power-law relation (r(2)=0.54, n=35). Quantitative comparison of these data against those reported for the bovine bone supported our hypothesis. Namely, when the differences in mean monotonic yield strain between the two types of bone were accounted for, a single S-N curve worked well for the pooled data (r(2)=0.75, n=72). Since elderly human vertebral and young bovine tibial trabecular bone represent two very different types of trabecular bone in terms of volume fraction and architecture, these findings suggest that the dominant failure mechanisms in trabecular bone for cyclic loading occur at the ultrastructural level.  相似文献   

11.
The ability to predict trabecular failure using microstructure-based computational models would greatly facilitate study of trabecular structure–function relations, multiaxial strength, and tissue remodeling. We hypothesized that high-resolution finite element models of trabecular bone that include cortical-like strength asymmetry at the tissue level, could predict apparent level failure of trabecular bone for multiple loading modes. A bilinear constitutive model with asymmetric tissue yield strains in tension and compression was applied to simulate failure in high-resolution finite element models of seven bovine tibial specimens. Tissue modulus was reduced by 95% when tissue principal strains exceeded the tissue yield strains. Linear models were first calibrated for effective tissue modulus against specimen-specific experimental measures of apparent modulus, producing effective tissue moduli of (mean±S.D.) 18.7±3.4 GPa. Next, a parameter study was performed on a single specimen to estimate the tissue level tensile and compressive yield strains. These values, 0.60% strain in tension and 1.01% strain in compression, were then used in non-linear analyses of all seven specimens to predict failure for apparent tensile, compressive, and shear loading. When compared to apparent yield properties previously measured for the same type of bone, the model predictions of both the stresses and strains at failure were not statistically different for any loading case (p>0.15). Use of symmetric tissue strengths could not match the experimental data. These findings establish that, once effective tissue modulus is calibrated and uniform but asymmetric tissue failure strains are used, the resulting models can capture the apparent strength behavior to an outstanding level of accuracy. As such, these computational models have reached a level of fidelity that qualifies them as surrogates for destructive mechanical testing of real specimens.  相似文献   

12.
Trabecular bone strength is marked not only by the onset of local yielding, but also by post-yield behavior. To study and predict trabecular bone elastic and yield properties, micro-finite element (micro-FE) models were successfully applied. However, trabecular bone strength predictions require micro-FE models incorporating post-yield behavior of trabecular bone tissue. Due to experimental difficulties, such data is currently not available. Here we used micro-FE modeling to determine failure behavior of trabecular bone tissue indirectly, by iteratively fitting FE simulation to experimental results. Failure parameters were fitted to an isotropic plasticity model based on Hill's yield function, using materially and geometrically nonlinear micro-FE models of seven bovine trabecular bone specimens. The predictive value of the averaged effective tissue properties was subsequently tested. The results showed that compression softening had to be included on the tissue level in order to accurately describe the apparent-level behavior of the bone specimens. A sensitivity study revealed that the simulated response was less sensitive to variations in the post-yield properties of the bone tissue than variations in the elastic and yield properties. Due to fitting of the tissue properties, apparent-level behavior could be accurately reproduced for each specimen separately. Predictions based on the averaged and fixed tissue properties were less accurate, due to inter-specimen variations in the tissue properties.  相似文献   

13.
The mechanical properties of cancellous bone and the biological response of the tissue to mechanical loading are related to deformation and strain in the trabeculae during function. Due to the small size of trabeculae, their motion is difficult to measure. To avoid the need to measure trabecular motions during loading the finite element method has been used to estimate trabecular level mechanical deformation. This analytical approach has been empirically successful in that the analytical models are solvable and their results correlate with the macroscopically measured stiffness and strength of bones. The present work is a direct comparison of finite element predictions to measurements of the deformation and strain at near trabecular level. Using the method of digital volume correlation, we measured the deformation and calculated the strain at a resolution approaching the trabecular level for cancellous bone specimens loaded in uniaxial compression. Smoothed results from linearly elastic finite element models of the same mechanical tests were correlated to the empirical three-dimensional (3D) deformation in the direction of loading with a coefficient of determination as high as 97% and a slope of the prediction near one. However, real deformations in the directions perpendicular to the loading direction were not as well predicted by the analytical models. Our results show, that the finite element modeling of the internal deformation and strain in cancellous bone can be accurate in one direction but that this does not ensure accuracy for all deformations and strains.  相似文献   

14.
The amount of microdamage in bone tissue impairs mechanical performance and may act as a stimulus for bone remodeling. Here we determine how loading mode (tension vs. compression) and microstructure (trabecular microarchitecture, local trabecular thickness, and presence of resorption cavities) influence the number and volume of microdamage sites generated in cancellous bone following a single overload. Twenty paired cylindrical specimens of human vertebral cancellous bone from 10 donors (47–78 years) were mechanically loaded to apparent yield in either compression or tension, and imaged in three dimensions for microarchitecture and microdamage (voxel size 0.7×0.7×5.0 μm3). We found that the overall proportion of damaged tissue was greater (p=0.01) for apparent tension loading (3.9±2.4%, mean±SD) than for apparent compression loading (1.9±1.3%). Individual microdamage sites generated in tension were larger in volume (p<0.001) but not more numerous (p=0.64) than sites in compression. For both loading modes, the proportion of damaged tissue varied more across donors than with bone volume fraction, traditional measures of microarchitecture (trabecular thickness, trabecular separation, etc.), apparent Young?s modulus, or strength. Microdamage tended to occur in regions of greater trabecular thickness but not near observable resorption cavities. Taken together, these findings indicate that, regardless of loading mode, accumulation of microdamage in cancellous bone after monotonic loading to yield is influenced by donor characteristics other than traditional measures of microarchitecture, suggesting a possible role for tissue material properties.  相似文献   

15.
High-resolution finite element models of trabecular bone failure could be used to augment current techniques for measuring damage in trabecular bone. However, the sensitivity of such models to the assumed tissue yield properties and apparent loading conditions is unknown. The goal of this study was to assess the sensitivity of the amount and mode (tension vs. compression) of tissue level yielding in trabecular bone to these factors. Linear elastic, high-resolution finite element models of nine bovine tibial trabecular bone specimens were used to calculate the fraction of the total tissue volume that exceeded each criterion for apparent level loading to the reported elastic limit in both on-axis and transverse compression and tension, and in shear. Four candidate yield criteria were studied, based on values suggested in the literature. Both the amount and the failure mode of yielded tissue were sensitive to the magnitudes of the tissue yield strains, the degree of tension-compression asymmetry of the yield criterion, and the applied apparent loads. The amount of yielded tissue was most sensitive to the orientation of the applied apparent loading, with the most tissue yielding for loading along the principal trabecular orientation and the least for loading perpendicular to it, regardless of the assumed tissue level yield criterion. Small changes in the magnitudes and the degree of asymmetry of the tissue yield criterion resulted in much larger changes in the amount of yielded tissue in the model. The results indicate that damage predictions based on high-resolution finite element models are highly sensitive to the assumed tissue yield properties. As such, good estimates of these values are needed before high-resolution finite element models can be applied to the study of trabecular bone damage. Regardless of the assumed tissue yield properties, the amount and type of damage that occurs in trabecular bone depends on the relative orientations of the applied apparent loads to the trabecular architecture, and this parameter should be controlled for both experimental and computational damage studies.  相似文献   

16.
Biomechanical tests of human femora have shown that small variations of the loading direction result in significant changes in measured bone mechanical properties. However, the heterogeneity in geometrical and bone tissue properties does not make human bones well suited to reproducibly assess the effects of loading direction on stiffness and strength. To precisely quantify the influence of loading direction on stiffness and strength of femora loaded at the femoral head, we tested femora from C57BL/6 inbred mice. We developed an image-based alignment protocol and investigated the loading direction influence on proximal femur stiffness and strength. An aluminum femoral phantom and C57BL/6 femora were tested under compression with different loading directions. Both tests, with the aluminum phantom and the murine bones, showed and quantified the linear dependence of stiffness on loading direction: a 5 degrees change in loading direction resulted in almost 30% change in stiffness. Murine bone testing also revealed and quantified the variation in strength due to loading direction: 5 degrees change in loading direction resulted in 8.5% change in strength. In conclusion, this study quantified, for the first time, the influence of misalignment on bone stiffness and strength for femoral head loading. We showed the extreme sensitivity of this site regarding loading direction.  相似文献   

17.
This study investigated the relationships between trabecular microstructure and elastic modulus, compressive strength, and suture anchor pullout strength. Twelve fresh-frozen humeri underwent mechanical testing followed by micro-computed tomography (μCT). Either compression testing of cylindrical bone samples or pullout testing using an Arthrex 5 mm Corkscrew was performed in synthetic sawbone or at specific locations in the humerus such as the greater tuberosity, lesser tuberosity, and humeral head. Synthetic sawbone underwent identical mechanical testing and μCT analysis. Bone volume fraction (BVF), structural model index (SMI), trabecular thickness (TbTh), trabecular spacing (TbSp), trabecular number (TbN), and connectivity density were compared against modulus, compressive strength, and pullout strength in both materials. In cadaveric bone, modulus showed correlations to all of the microstructural properties, while compressive and pullout strength were only correlated to BVF, SMI, and TbSp. The microstructure of synthetic bone differed from cadaveric bone as SMI and TbTh showed little variation across the densities tested. Therefore, SMI and TbTh were the only microstructural properties that did not show correlations to the mechanical properties tested in synthetic bone. This study helps identify key microstructure–property relationships in cadaveric and synthetic bone as well as illustrate the similarities and differences between cadaveric and synthetic bone as biomechanical test materials.  相似文献   

18.
Recently published compression tests on PMMA/bone specimens extracted after vertebral bone augmentation indicated that PMMA/bone composites were not reinforced by the trabecular bone at all. In this study, the reasons for this unexpected behavior should be investigated by using non-linear micro-FE models. Six human vertebral bodies were augmented with either standard or low-modulus PMMA cement and scanned with a HR-pQCT system before and after augmentation. Six cylindrical PMMA/bone specimens were extracted from the augmented region, scanned with a micro-CT system and tested in compression. Four different micro-FE models were generated from these images which showed different bone tissue material behavior (with/without damage), interface behavior (perfect bonding, frictionless contact) and PMMA shrinkage due to polymerization. The non-linear stress-strain curves were compared between the different micro-FE models as well as to the compression tests of the PMMA/bone specimens. Micro-FE models with contact between bone and cement were 20% more compliant compared to those with perfect bonding. PMMA shrinkage damaged the trabecular bone already before mechanical loading, which further reduced the initial stiffness by 24%. Progressing bone damage during compression dominated the non-linear part of the stress-strain curves. The micro-FE models including bone damage and PMMA shrinkage were in good agreement with the compression tests. The results were similar with both cements. In conclusion, the PMMA/bone interface properties as well as the initial bone damage due to PMMA polymerization shrinkage clearly affected the stress-strain behavior of the composite and explained why trabecular bone did not contribute to the stiffness and strength of augmented bone.  相似文献   

19.
Assessment of the mechanical properties of trabecular bone is of major biological and clinical importance for the investigation of bone diseases, fractures and their treatments. Finite element (FE) methods are getting increasingly popular for quantifying the elastic and failure properties of trabecular bone. In particular, voxel-based FE methods have been previously used to calculate the effective elastic properties of trabecular microstructures. However, in most studies, bone tissue moduli were assumed or back-calculated to match the apparent elastic moduli from experiments, which often lead to surprisingly low values when compared to nanoindentation results. In this study, voxel-based FE analysis of trabecular bone is combined with physical measures of volume fraction, micro-CT (microCT) reconstructions, uniaxial mechanical tests and specimen-specific nanoindentation tests for proper validation of the method. Cylindrical specimens of cancellous bone were extracted from human femurs and their volume fraction determined with Archimede's method. Uniaxial apparent modulus of the specimens was measured with an improved tension-compression testing protocol that minimizes boundary artefacts. Their microCT reconstructions were segmented to match the measured bone volume fraction and used to create full-size voxel models with 30-45 microm element size. For each specimen, linear isotropic elastic material properties were defined based on specific nanoindentation measurements of its embedded bone tissue. Linear FE analyses were finally performed to simulate the uniaxial mechanical tests. Additional parametric analyses were performed to evaluate the potential errors on the predicted apparent modulus arising from variations in segmentation threshold, tissue modulus, and the use of 125-mm(3) cubic sub-regions. The results demonstrate an excellent correspondence between experimental measures and FE predictions of uniaxial apparent modulus. In conclusion, the adopted voxel-based FE approach is found to be a robust method to predict the linear elastic properties of human cancellous bone, provided segmentation of the microCT reconstructions is carefully calibrated, tissue modulus is known a priori and the entire region of interest is included in the analysis.  相似文献   

20.
Damage in trabecular bone at small strains   总被引:5,自引:0,他引:5  
Evidence that damage decreases bone quality, increases fracture susceptibility, and serves as a remodeling stimulus motivates further study of what loading magnitudes induce damage in trabecular bone. In particular, whether damage occurs at the smaller strains characteristic of habitual, as opposed to traumatic, loading is not known. The overall goal of this study was to characterize damage accumulation in trabecular bone at small strains (0.20 - 0.45% strain). A continuum damage mechanics approach was taken whereby damage was quantified by changes in modulus and residual strain. Human vertebral specimens (n = 7) were tested in compression using a multi-cycle load - unload protocol in which the maximum applied strain for each cycle, epsilonmax, was increased incrementally from epsilonmax = 0.20% on the first loading cycle to epsilonmax = 0.45% on the last cycle. Modulus and residual strain were measured for each cycle. Both changes in modulus and residual strains commenced at small strains, beginning as early as 0.24 and 0.20% strain, respectively. Strong correlations between changes in modulus and residual strains were observed (r = 0.51 - 0.98). Fully nonlinear, high-resolution finite element analyses indicated that even at small apparent strains, tissue-level strains were sufficiently high to cause local yielding. These results demonstrate that damage in trabecular bone occurs at apparent strains less than half the apparent compressive yield strain reported previously for human vertebral trabecular bone. Further, these findings imply that, as a consequence of the highly porous trabecular structure, tissue yielding can initiate at very low apparent strains and that this local failure has detectable and negative consequences on the apparent mechanical properties of trabecular bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号