首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Species of carabid (ground) beetles are among the most important postdispersal weed seed predators in temperate arable lands. Field studies have shown that carabid beetles can remove upwards of 65%–90% of specific weed seeds shed in arable fields each year. Such data do not explain how and why carabid predators go after weed seeds, however. It remains to be proven that weed seed predation by carabids is a genuine ecological interaction driven by certain ecological factors or functional traits that determine interaction strength and power predation dynamics, bringing about therefore a natural regulation of weed populations. Along these lines, this review ties together the lines of evidence around weed seed predation by carabid predators. Chemoperception rather than vision seems to be the primary sensory mechanism guiding seed detection and seed selection decisions in carabid weed seed predators. Selection of weed seeds by carabid seed predators appears directed rather than random. Yet, the nature of the chemical cues mediating detection of different seed species and identification of the suitable seed type among them remains unknown. Selection of certain types of weed seeds cannot be predicted based on seed chemistry per se in all cases, however. Rather, seed selection decisions are ruled by sophisticated behavioral mechanisms comprising the assessment of both chemical and physical characteristics of the seed. The ultimate selection of certain weed seed types is determined by how the chemical and physical properties of the seed match with the functional traits of the predator in terms of seed handling ability. Seed density, in addition to chemical and physical seed traits, is also an important factor that is likely to shape seed selection decisions in carabid weed seed predators. Carabid responses to seed density are rather complex as they are influenced not only by seed numbers but also by trait‐based suitability ranks of the different seed types available in the environment.  相似文献   

3.
4.
Seed predation is an important component of seed mortality of weeds in agro-ecosystems, but the agronomic use and management of this natural weed suppression is hampered by a lack of insight in the underlying ecological processes. In this paper, we investigate whether and how spatial and temporal variation in activity-density of granivorous ground beetles (Coleoptera: Carabidae) results in a corresponding pattern of seed predation. Activity-density of carabids was measured by using pitfall traps in two organic winter wheat fields from March to July 2004. Predation of seeds (Capsella bursa-pastoris, Lamium amplexicaule, Poa annua and Stellaria media) was assessed using seed cards at the same sites and times. As measured by pitfall traps, carabids were the dominant group of insects that had access to the seed cards. In the field, predation of the four different species of seed was in the order: C. bursa-pastoris>P. annua>S. media>L. amplexicaule; and this order of preference was confirmed in the laboratory using the dominant species of carabid. On average, seed predation was higher in the field interior compared to the edge, whereas catches of carabids were highest near the edge. Weeks with elevated seed predation did not concur with high activity-density of carabids. Thus, patterns of spatial and temporal variation in seed predation were not matched by similar patterns in the abundance of granivorous carabid beetles. The lack of correspondence is ascribed to effects of confounding factors, such as weather, the background density of seeds, the composition of the carabid community, and the phenology and physiological state of the beetles. Our results show that differences in seed loss among weed species may be predicted from laboratory trials on preference. However, predator activity-density, as measured in pitfall traps, is an insufficient predictor of seed predation over time and space within a field.  相似文献   

5.
  1. Carabid beetles are major predators in agro-ecosystems. The composition of their communities within crop environments governs the pest control services they provide. An understudied aspect is the distribution of predacious carabid larvae in the soil.
  2. We used novel subterranean trapping with standard pitfall trapping, within a multi-crop rotation experiment, to assess the responses of above- and below-ground carabid communities to management practices.
  3. Crop and trap type significantly affected pooled carabid abundance with an interaction of the two, the highest numbers of carabids were caught in subterranean traps in barley under sown with grass.
  4. Trap type accounted for the most variance observed in carabid community composition, followed by crop.
  5. Tillage responses were only apparent at the species level for three of the eight species modelled.
  6. Responses to crop type varied by species. Most species had higher abundance in under-sown barley, than grass, wheat and barley. Crop differences were greater in the subterranean trap data. For predaceous larvae, standard pitfalls showed lowest abundances in under-sown barley, yet subterranean traps revealed abundances to be highest in this crop.
  7. Comprehensive estimation of ecosystem services should incorporate both above- and below-ground community appraisal, to inform appropriate management.
  相似文献   

6.
Abstract
  • 1 The effects of reduced insecticide and herbicide dosages on total dry mass of carabids and their generic components were examined using fenced pitfall traps in winter wheat fields on three farms in Southern Zealand, Denmark.
  • 2 The estimated total dry mass of carabids increased by 25% when the pesticides were reduced to one fourth of the normal application rates.
  • 3 At reduced dosages, the activity of the genus Pterostichus was increased by 62%. The activities of Loricera and Demetrias were increased by 67% and 56%, respectively, although significant interaction terms indicated that the dosage effect was not uniform for these genera on all farms. Calathus tended to be more numerous with reduced pesticide applications. By contrast, catches of Bembidion, Synuchus and Trechus decreased by up to 45% at reduced dosages.
  • 4 A higher weed cover due to reduced herbicide applications probably benefited most species, except those having habitat associations with sparse vegetation such as the field‐inhabiting Bembidion and Synuchus.
  • 5 The higher activity of larger carabids may lead to enhanced predation on smaller carabids and hence different carabid assemblages.
  相似文献   

7.
8.
Farmland biodiversity and its associated ecosystem services are affected by agricultural activities at multiple spatial scales. Among these services, the regulation of weeds by invertebrate seed predators has received much attention recently but little is known about the relative effect of local management and landscape context of fields on this process. We monitored seed predation on four common weed species and carabid communities in 28 winter-cereals fields during five consecutive weeks in spring 2010. These fields were situated in contrasted landscape contexts and varied in terms of intensity of pesticide treatments and soil tillage regimes. Weed seed predation was strongly and positively related to the Shannon diversity of (strictly) granivorous carabids and to the activity–density of omnivorous carabids but negatively to the richness of omnivorous carabids. Weed seed predation and granivore diversity were positively related to landscape diversity and the proportion cover of temporary grassland within a 1000 m radius around focal fields and were negatively affected by the intensity of local pesticide treatments. No-till systems sheltered higher diversity of granivorous carabids but did not show higher seed predation rates. We showed that landscape composition factors had a higher relative influence than local practices factors on weed seed predation service. Consequently, weed management strategies should not only consider the management of single fields but also the surrounding landscape to preserve carabid biodiversity and enhance weed seed predation service.  相似文献   

9.
10.
Seed heteromorphism is a marked character of many Chenopodioideae (Amaranthaceae). Seed morphs differ in dormancy, germination and seedling biology, but differences in their predation have not yet been studied. Atriplex sagittata produces small black dormant and large brown non‐dormant seeds. In this study, the timing of seed release and seedling establishment were ascertained, and their consumption by invertebrates (carabids, isopods and slugs) was studied. Seeds dispersed in the autumn passed the winter on the ground surface, protected from invertebrate predation by low temperatures. In the following vegetative season, ungerminated black seeds exposed to predation on ground surface were preferred by a large carabid species, Pseudoophonus rufipes. Some black and all brown seeds escaped predation by germinating in early spring. The seedlings were little endangered by carabids and isopods but were preferred by an invasive slug, Arion vulgaris, the feeding of which can exterminate seedlings at places in which slugs are abundant. Invertebrate predation is important factor of seed and seedling mortality of A. sagittata and seed heteromorphism modifies its intensity and timing.  相似文献   

11.
  1. Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing‐induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size‐structured predation and cannibalism) in complex ecosystems undergoing rapid change.
  2. Changes in maturation size from fishing and predation have previously been explored with multi‐species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco‐evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size‐structured food‐web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species'' relative maturation sizes under different types of selection pressures.
  3. Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.
  4. The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium‐size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.
  5. Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species'' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.
  相似文献   

12.
13.
  1. Urbanisation is one of the main drivers of insect species loss worldwide. However, its impacts on ecological interactions involving insects still deserve further research, especially seed predation and parasitism of seed predators.
  2. Here, we evaluated the seed predation rate by the specialist bruchid beetle Pseudopachymerina spinipes and its parasitism rate in the native tree Vachellia caven (Fabaceae) along an urbanisation gradient in Cordoba (Argentina). Since resource availability can influence these ecological interactions, we also investigated whether seed and prey availability could affect seed predation and parasitism rates, respectively.
  3. We sampled trees in 10 sampling sites along an urbanisation gradient estimated by the Normalised Difference Vegetation Index (NDVI) within a 100 m radius. In our system, sites with low NDVI, beyond representing the low amount of vegetation cover, also indicate high surface temperature and low availability of host trees.
  4. Seed predation in V. caven and the parasitism rate of P. spinipes were significantly reduced with increasing urbanisation. Notably, seed availability at the pod level did not affect seed predation rate, while prey availability was negatively correlated with parasitism rate.
  5. These findings suggest a deleterious effect of urbanisation on the studied antagonistic interactions, giving no support to the idea of resource limitation effects.
  相似文献   

14.
There is a growing demand for ecological restoration using suitable seeds following international standards or national legal demands for local seed‐sourcing. However, before selecting the appropriate geographic origin of seeds, it is vital to explore taxonomic complexity related to the focal taxa. We used ddRAD‐seq to screen genomic diversity within Carex bigelowii s.lat. focussing on Norway. This species complex is considered a candidate for seeding, but presents considerable morphological, ecological, and genetic variation. The genetic structure of 132 individuals of C. bigelowii s.lat., including Carex nigra as an outgroup, was explored using ordinations, clustering analyses, and a genetic barrier algorithm. Two highly divergent clusters were evident, supporting the recognition of two taxonomic units “C. dacica” and C. bigelowii “subsp. bigelowii”. Previously defined seed‐sourcing regions for C. bigelowii s.lat. did not consider the known taxonomic complexity, and therefore interpreted the overall genetic structure as seed‐sourcing regions, not taxa. We estimated genetic neighborhood sizes within each taxon to be 100–150 km and 300 km, respectively, indicating species‐specific delimitations of local seed‐sourcing regions. Frequent hybrids, local genetic distinctiveness, and suggested ecotypes add complexity to the discussed seed‐sourcing regions. Our results show how genomic screening of diversity and structure in a species complex can alleviate the taxonomic impediment, inform practical questions, and legal requirements related to seed‐sourcing, and together with traditional taxonomic work provide necessary information for a sound management of biodiversity.  相似文献   

15.
  1. Plants typically interact with multiple above‐ and below‐ground organisms simultaneously, with their symbiotic relationships spanning a continuum ranging from mutualism, such as with arbuscular mycorrhizal fungi (AMF), to parasitism, including symbioses with plant‐parasitic nematodes (PPN).
  2. Although research is revealing the patterns of plant resource allocation to mutualistic AMF partners under different host and environmental constraints, the root ecosystem, with multiple competing symbionts, is often ignored. Such competition is likely to heavily influence resource allocation to symbionts.
  3. Here, we outline and discuss the competition between AMF and PPN for the finite supply of host plant resources, highlighting the need for a more holistic understanding of the influence of below‐ground interactions on plant resource allocation. Based on recent developments in our understanding of other symbiotic systems such as legume–rhizobia and AMF‐aphid‐plant, we propose hypotheses for the distribution of plant resources between contrasting below‐ground symbionts and how such competition may affect the host.
  4. We identify relevant knowledge gaps at the physiological and molecular scales which, if resolved, will improve our understanding of the true ecological significance and potential future exploitation of AMF‐PPN‐plant interactions in order to optimize plant growth. To resolve these outstanding knowledge gaps, we propose the application of well‐established methods in isotope tracing and nutrient budgeting to monitor the movement of nutrients between symbionts. By combining these approaches with novel time of arrival experiments and experimental systems involving multiple plant hosts interlinked by common mycelial networks, it may be possible to reveal the impact of multiple, simultaneous colonizations by competing symbionts on carbon and nutrient flows across ecologically important scales.
  相似文献   

16.
Several species of carabid beetles are important postdispersal predators of the seeds of herbaceous plants. The preferences of carabids for particular seeds differ, but the factors that determine their choice are little studied. We tested the hypothesis that preferences are determined by taxonomic constraints (carabid species affiliation), and carabid and seed size. The preferences were determined for adults of 30 species of central European field carabids mainly belonging to the tribes Zabrini (17 species) and Harpalini (10 species) (body mass 1–36 mg). In a cafeteria experiment the beetles were offered an excess of seeds from 28 species of dicotyledoneous herbaceous plants (mass 0.1–8.7 mg). The number of seeds eaten during a 5-day experiment was used as an estimate of preference. Mass of the preferred species of seed eaten was positively related to carabid body mass in both tribes. Multivariate analysis indicated three groups of carabid species with marked preferences for particular species of seeds: (i) species of Harpalini favoured mainly the seed of Cirsium arvense and Viola arvensis, (ii) some species of Zabrini the seeds of Asteraceae (Taraxacum officinale, Tripleurospermum inodorum and Crepis biennis) and (iii) other species of Zabrini the small seeds of Brassicaceae and Caryophyllaceae. The species of Harpalini were more generalist and accepted a greater proportion of seed species than Zabrini of the same size. Preferences of carabid seed predators were thus determined by taxonomic and size constraints, as in other groups of predators.  相似文献   

17.
  1. Insect populations are changing rapidly, and monitoring these changes is essential for understanding the causes and consequences of such shifts. However, large‐scale insect identification projects are time‐consuming and expensive when done solely by human identifiers. Machine learning offers a possible solution to help collect insect data quickly and efficiently.
  2. Here, we outline a methodology for training classification models to identify pitfall trap‐collected insects from image data and then apply the method to identify ground beetles (Carabidae). All beetles were collected by the National Ecological Observatory Network (NEON), a continental scale ecological monitoring project with sites across the United States. We describe the procedures for image collection, image data extraction, data preparation, and model training, and compare the performance of five machine learning algorithms and two classification methods (hierarchical vs. single‐level) identifying ground beetles from the species to subfamily level. All models were trained using pre‐extracted feature vectors, not raw image data. Our methodology allows for data to be extracted from multiple individuals within the same image thus enhancing time efficiency, utilizes relatively simple models that allow for direct assessment of model performance, and can be performed on relatively small datasets.
  3. The best performing algorithm, linear discriminant analysis (LDA), reached an accuracy of 84.6% at the species level when naively identifying species, which was further increased to >95% when classifications were limited by known local species pools. Model performance was negatively correlated with taxonomic specificity, with the LDA model reaching an accuracy of ~99% at the subfamily level. When classifying carabid species not included in the training dataset at higher taxonomic levels species, the models performed significantly better than if classifications were made randomly. We also observed greater performance when classifications were made using the hierarchical classification method compared to the single‐level classification method at higher taxonomic levels.
  4. The general methodology outlined here serves as a proof‐of‐concept for classifying pitfall trap‐collected organisms using machine learning algorithms, and the image data extraction methodology may be used for nonmachine learning uses. We propose that integration of machine learning in large‐scale identification pipelines will increase efficiency and lead to a greater flow of insect macroecological data, with the potential to be expanded for use with other noninsect taxa.
  相似文献   

18.
  1. Multi‐level societies are complex, nested social systems where basic social groups (i.e., core units) associate in a hierarchical manner, allowing animals to adjust their group sizes in response to variables such as food availability, predation, or conspecific threat. These pressures fluctuate over time and examining the extent to which this variation affects the clustering of core units into different tiers may be instrumental in understanding the evolution of multi‐level societies.
  2. The goal of our study was to determine the degree of temporal variability in interunit associations in a multi‐level society of Rwenzori Angolan colobus monkey (Colobus angolensis ruwenzorii), and to determine the social and ecological factors that underlie association patterns. The C. a. ruwenzorii multi‐level society consists of at least three tiers, with core units clustering into clans that share a home range in a band tier.
  3. We performed social network analyses on 21 months of association data from 13 core units (totaling 139 identifiable individuals) at Lake Nabugabo, Uganda. We described the patterns of variation in core‐unit associations over time and investigated how changes in rainfall, food availability, and interunit dispersals were correlated with these associations over the short‐term (month to month) and long‐term (year to year).
  4. Although clans were relatively stable, larger‐scale changes in association patterns included the formation of an all‐male unit and the transfer of one core unit between clans (within the band tier). Seasonally, core units associated significantly more when fruit, their preferred food source, was abundant (i.e., social networks were denser and more clustered) and there was no direct effect of rainfall seasonality or young leaf availability. Male dispersals also occurred more during periods of high fruit availability, suggesting that greater band cohesion allowed males to prospect and transfer between core units. Once males transferred, their previous and new units associated significantly more with one another than with other core units for 1–2 months postdispersal. The dispersal of five males from one core unit to another in a different clan co‐occurred with this core unit switching its clan affiliation.
  5. By examining temporal shifts in social network structure among core units, this study shows the interconnected roles that food availability and dispersal have in shaping the C. a. ruwenzorii multi‐level social system. Our findings highlight how ecological conditions can drive association patterns, impact interunit relationships, and influence social organization.
  相似文献   

19.
  1. The development of encompassing general models of ecology is precluded by underrepresentation of certain taxa and systems. Models predicting context‐dependent outcomes of biotic interactions have been tested using plants and bacteria, but their applicability to higher taxa is largely unknown.
  2. We examined context dependency in a reproductive mutualism between two stream fish species: mound nest‐building bluehead chub Nocomis leptocephalus and mountain redbelly dace Chrosomus oreas, which often uses N. leptocephalus nests for spawning. We hypothesized that increased predator density and decreased substrate availability would increase the propensity of C. oreas to associate with N. leptocephalus and decrease reproductive success of both species.
  3. In a large‐scale in situ experiment, we manipulated egg predator density and presence of both symbionts (biotic context), and replicated the experiment in habitats containing high‐ and low‐quality spawning substrate (abiotic context).
  4. Contradictory to our first hypothesis, we observed that C. oreas did not spawn without its host. The interaction outcome switched from commensalistic to mutualistic with changing abiotic and biotic contexts, although the net outcome was mutualistic.
  5. The results of this study yielded novel insight into how context dependency operates in vertebrate mutualisms. Although the dilution effect provided by C. oreas positively influenced reproductive success of N. leptocephalus, it was not enough to overcome both egg predation and poor spawning habitat quality. Outcomes of the interaction may be ultimately determined by associate density. Studies of context dependency in vertebrate systems require detailed knowledge of species life‐history traits.
  相似文献   

20.
  1. Ecologically meaningful seed germination experiments are constrained by access to seeds and relevant environments for testing at the same time. This is particularly the case when research is carried out far from the native area of the studied species.
  2. Here, we demonstrate an alternative—the use of glasshouses in botanic gardens as simulated‐natural habitats to extend the ecological interpretation of germination studies. Our focal taxa were banana crop wild relatives (Musa acuminata subsp. burmannica, Musa acuminata subsp. siamea, and Musa balbisiana), native to tropical and subtropical South‐East Asia. Tests were carried out in Belgium, where we performed germination tests in relation to foliage‐shading/exposure to solar radiation and seed burial depth, as well as seed survival and dormancy release in the soil. We calibrated the interpretation of these studies by also conducting an experiment in a seminatural habitat in a species native range (M. balbisiana—Los Baños, the Philippines), where we tested germination responses to exposure to sun/shade. Using temperature data loggers, we determined temperature dynamics suitable for germination in both these settings.
  3. In these seminatural and simulated‐natural habitats, seeds germinated in response to exposure to direct solar radiation. Seed burial depth had a significant but marginal effect by comparison, even when seeds were buried to 7 cm in the soil. Temperatures at sun‐exposed compared with shaded environments differed by only a few degrees Celsius. Maximum temperature of the period prior to germination was the most significant contributor to germination responses and germination increased linearly above a threshold of 23℃ to the maximum temperature in the soil (in simulated‐natural habitats) of 35℃.
  4. Glasshouses can provide useful environments to aid interpretation of seed germination responses to environmental niches.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号