首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
Makino H  Malinow R 《Neuron》2011,72(6):1001-1011
Synapses in the brain are continuously modified by experience, but the mechanisms are poorly understood. In vitro and theoretical studies suggest threshold-lowering interactions between nearby synapses that favor clustering of synaptic plasticity within a dendritic branch. Here, a fluorescently tagged AMPA receptor-based optical approach was developed permitting detection of single-synapse plasticity in mouse cortex. Sensory experience preferentially produced synaptic potentiation onto nearby dendritic synapses. Such clustering was significantly reduced by expression of a phospho-mutant AMPA receptor that is insensitive to threshold-lowering modulation for plasticity-driven synaptic incorporation. In contrast to experience, sensory deprivation caused homeostatic synaptic enhancement globally on dendrites. Clustered synaptic potentiation produced by experience could bind behaviorally relevant information onto dendritic subcompartments; global synaptic upscaling by deprivation could equally sensitize all dendritic regions for future synaptic input.  相似文献   

2.
Once sensory stimuli become able to alter firing patterns in the developing brain, they can influence the maturation of neuronal circuits. Recent experimental studies add to our understanding of precisely which developmental events are affected by early experience. In particular, it appears that experience of the external environment can affect the brain earlier in development and at earlier stages of sensory processing than previously thought. These studies emphasise the developmental importance of the patterning of neuronal firing produced either by sensory stimuli or by spontaneous activity. The timing of action potentials is also an important aspect of several exciting studies describing the mechanisms - anatomical, synaptic, and molecular - by which early experience brings about alterations in the maturation of sensory circuitry. Importantly, this kind of approach can lead to predictions concerning the nature of sensory stimulation that is most effective in instructing brain development.  相似文献   

3.
Lüscher C  Malenka RC 《Neuron》2011,69(4):650-663
Addictive drugs have in common that they target the mesocorticolimbic dopamine (DA) system. This system originates in the ventral tegmental area (VTA) and projects mainly to the nucleus accumbens (NAc) and prefrontal cortex (PFC). Here, we review the effects that such drugs leave on glutamatergic and GABAergic synaptic transmission in these three brain areas. We refer to these changes as drug-evoked synaptic plasticity, which outlasts the presence of the drug in the brain and contributes to the reorganization of neural circuits. While in most cases these early changes are not sufficient to induce the disease, with repetitive drug exposure, they may add up and contribute to addictive behavior.  相似文献   

4.
Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.  相似文献   

5.
Mammals that hibernate experience extreme metabolic states and body temperatures as they transition between euthermia, a state resembling typical warm blooded mammals, and prolonged torpor, a state of suspended animation where the brain receives as low as 10% of normal cerebral blood flow. Transitions into and out of torpor are more physiologically challenging than the extreme metabolic suppression and cold body temperatures of torpor per se. Mammals that hibernate show unprecedented capacities to tolerate cerebral ischemia, a decrease in blood flow to the brain caused by stroke, cardiac arrest or brain trauma. While cerebral ischemia often leads to death or disability in humans and most other mammals, hibernating mammals suffer no ill effects when blood flow to the brain is dramatically decreased during torpor or experimentally induced during euthermia. These animals, as adults, also display rapid and pronounced synaptic flexibility where synapses retract during torpor and rapidly re-emerge upon arousal. A variety of coordinated adaptations contribute to tolerance of cerebral ischemia in these animals. In this review we discuss adaptations in heterothermic mammals that may suggest novel therapeutic targets and strategies to protect the human brain against cerebral ischemic damage and neurodegenerative disease.  相似文献   

6.
牛磺酸是哺乳动物中枢神经系统中含量最为丰富的自由氨基酸之一,具有许多认定的神经生理功能。最新的研究结果表明,用牛磺酸孵育脑片可以诱导兴奋性突触传递的持久增强效应。虽然牛磺酸引起的这种持久增强不是由于活动或经验所导致的突触效能的改变,但与反映突触可塑性的长时程增强具有许多共同特征,分享部分共同机制。同时,药理学实验提示,神经元对牛磺酸的摄取可能是长时程增强诱导的关键步骤。  相似文献   

7.
大脑最基本性质是快速适应周围环境改变的能力,这主要是通过改变各个神经细胞之间的连接来实现的。有多种不同机制可以调节突触的强度,包括突触效率的稳态调节、突触增强和减弱的形态学表现以及钙在其中的作用。当开始了解这些突触改变的细胞生物学机制的时候,也应该考虑这种突触可塑性在完整大脑中的功能意义。因此,应用最新的成像手段来研究经验如何影响皮层环路中突触的改变,尤其是在体双光子显微技术可以在新皮层的单个神经元水平上研究形态和功能可塑性。这些实验将逐渐填补传统的细胞水平和系统水平研究之间的空白,并将有助于更全面充分地理解突触可塑性这种现象及其在皮层功能乃至动物行为中所起的作用。  相似文献   

8.
Worker honeybees proceed through a sequence of tasks, passing from hive and guard duties to foraging activities. The underlying neuronal changes accompanying and possibly mediating these behavioral transitions are not well understood. We studied changes in the microglomerular organization of the mushroom bodies, a brain region involved in sensory integration, learning, and memory, during adult maturation. We visualized the MB lips' microglomerular organization by applying double labeling of presynaptic projection neuron boutons and postsynaptic Kenyon cell spines, which form microglomerular complexes. Their number and density, as well as the bouton volume, were measured using 3D-based techniques. Our results show that the number of microglomerular complexes and the bouton volumes increased during maturation, independent of environmental conditions. In contrast, manipulations of behavior and sensory experience caused a decrease in the number of microglomerular complexes, but an increase in bouton volume. This may indicate an outgrowth of synaptic connections within the MB lips during honeybee maturation. Moreover, manipulations of behavioral and sensory experience led to adaptive changes, which indicate that the microglomerular organization of the MB lips is not static and determined by maturation, but rather that their organization is plastic, enabling the brain to retain its synaptic efficacy.  相似文献   

9.
Administration of methodone to pregnant and nursing rats or direct treatment of developing pups with methadone resulted in deficits of development of body weight, brain weight and synaptosomal uptake of 5-hydroxytryptamine, dopamine and norepinephrine. Defective synaptic development was most apparent immediately after birth in pups whose mothers received methadone; while some recovery occurred by 3 weeks of age, there was a subsequent deficit in synaptosomal uptake post-weaning. A similar pattern also was seen in development of synaptic vesicle amine uptake. Direct treatment of neonates with methadone also caused reductions in development of synaptosomal and vesicular uptake mechanisms, but the patterns of alteration were different from those in the maternal treatment group. These studies show that the adverse effect of opiates on general brain growth are accompanied by a slowing of synaptic development of biogenic amine systems.  相似文献   

10.
Accumulation of beta-amyloid protein (Abeta) in the brain is a key feature of Alzheimer's disease (AD). The build-up of aggregated forms of Abeta leads to synaptic loss and to cognitive dysfunction. Although the pathways controlling production and aggregation of Abeta are well studied, the mechanisms that drive the spread of neurodegeneration in the brain are unclear. Here, the idea is presented that AD progresses as a consequence of synaptic scaling, a type of neuronal plasticity that helps maintain synaptic signal strength. Recent studies indicate that brain-derived neurotrophic factor, tumour necrosis factor-alpha and alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) regulate synaptic scaling in the AD brain. It is suggested that further studies on synaptic scaling in AD could reveal new targets for therapeutic drug development.  相似文献   

11.
Drug addiction is a major public health issue worldwide. The persistence of drug craving coupled with the known recruitment of learning and memory centers in the brain has led investigators to hypothesize that the alterations in glutamatergic synaptic efficacy brought on by synaptic plasticity may play key roles in the addiction process. Here we review the present literature, examining the properties of synaptic plasticity within drug reward circuitry, and the effects that drugs of abuse have on these forms of plasticity. Interestingly, multiple forms of synaptic plasticity can be induced at glutamatergic synapses within the dorsal striatum, its ventral extension the nucleus accumbens, and the ventral tegmental area, and at least some of these forms of plasticity are regulated by behaviorally meaningful administration of cocaine and/or amphetamine. Thus, the present data suggest that regulation of synaptic plasticity in reward circuits is a tractable candidate mechanism underlying aspects of addiction.  相似文献   

12.
Despite great progress in antipsychotic drug research, the molecular mechanisms by which these drugs work have remained elusive. High-throughput gene profiling methods have advanced this field by allowing the simultaneous investigation of hundreds to thousands of genes. However, different methodologies, choice of brain region, and drugs studied have made comparisons across different studies difficult. Because of the complexity of gene expression changes caused by drugs, teasing out the most relevant expression differences is a challenging task. One approach is to focus on gene expression changes that converge on the same systems that were previously deemed important to the pathology of psychiatric disorders. From the microarray studies performed on human postmortem brain samples from schizophrenics, the systems most implicated to be dysfunctional are synaptic machinery, oligodendrocyte/myelin function, and mitochondrial/ubiquitin metabolism. Drugs may act directly or indirectly to compensate for underlying pathological deficits in schizophrenia or via other mechanisms that converge on these pathways. Side effects, consisting of motor and metabolic dysfunction (which occur with typical and atypical drugs, respectively), also may be mediated by gene expression changes that have been reported in these studies. This article surveys both the convergent antipsychotic mechanisms and the genes that may be responsible for other effects elicited by antipsychotic drugs.  相似文献   

13.
14.
Integrin class adhesion proteins are concentrated at adult brain synapses. Whether synaptic integrins engage kinase signaling cascades has not been determined, but is a question of importance to ideas about integrin involvement in functional synaptic plasticity. Accordingly, synaptoneurosomes from adult rat brain were used to test if matrix ligands activate integrin-associated tyrosine kinases, and if integrin signaling targets include NMDA-class glutamate neurotransmitter receptors. The integrin ligand peptide Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) induced rapid (within 5 min) and robust increases in tyrosine phosphorylation of focal adhesion kinase, proline-rich tyrosine kinase 2 and Src family kinases. Increases were similarly induced by the native ligand fibronectin, blocked with neutralizing antibodies to beta1 integrin, and not obtained with control peptides, indicating that kinase activation was integrin-mediated. Both GRGDSP and fibronectin caused rapid Src kinase-dependent increases in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in synaptoneurosomes and acute hippocampal slices. Tests of the physiological significance of the latter result showed that ligand treatment caused a rapid and beta1 integrin-dependent increase in NMDA receptor-mediated synaptic responses. These results provide the first evidence that, in adult brain, synaptic integrins activate local kinase cascades with potent effects on the operation of nearby neurotransmitter receptors implicated in synaptic plasticity.  相似文献   

15.
Highly purified rat and cow brain synaptic vesicles contain major proteins with molecular weights of approximately 74,000, 60,000, 57,000, 40,000, 38,000, and 34,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The presence of the major proteins on synaptic vesicles was confirmed by immunoprecipitation of intact rat brain synaptic vesicles with a synaptic vesicle-specific monoclonal antibody. The 40,000-Mr protein appeared to be identical to the 38,000-Mr integral membrane glycoprotein, p38 or synaptophysin, previously identified as a major component of mammalian synaptic vesicles. The isoelectric point of the 75,000-Mr proteins from either rat or cow brain synaptic vesicles is 5.0, and the pI of the 57,000-Mr protein is approximately 5.1 in both species. The similarity in size and charge of several major proteins in rat and cow synaptic vesicles suggests a high degree of structure conservation of these proteins in diverse mammalian species and raises the possibility that a set of functions common to most or all mammalian synaptic vesicles is mediated by these proteins.  相似文献   

16.
The microtubule-associated protein tau accumulates in Alzheimer's and other fatal dementias, which manifest when forebrain neurons die. Recent advances in understanding these disorders indicate that brain dysfunction precedes neurodegeneration, but the role of tau is unclear. Here, we show that early tau-related deficits develop not from the loss of synapses or neurons, but rather as a result of synaptic abnormalities caused by the accumulation of hyperphosphorylated tau within intact dendritic spines, where it disrupts synaptic function by impairing glutamate receptor trafficking or synaptic anchoring. Mutagenesis of 14 disease-associated serine and threonine amino acid residues to create pseudohyperphosphorylated tau caused tau mislocalization while creation of phosphorylation-deficient tau blocked the mistargeting of tau to dendritic spines. Thus, tau phosphorylation plays a critical role in mediating tau mislocalization and subsequent synaptic impairment. These data establish that the locus of early synaptic malfunction caused by tau resides in dendritic spines.  相似文献   

17.
Down syndrome (DS) is the most prevalent form of intellectual disability caused by the triplication of ∼230 genes on chromosome 21. Recent data in Ts65Dn mice, the foremost mouse model of DS, strongly suggest that cognitive impairment in individuals with DS is a consequence of reduced synaptic plasticity because of chronic over-inhibition. It remains unclear however whether changes in plasticity are tied to global molecular changes at synapses, or are due to regional changes in the functional properties of synaptic circuits. One interesting framework for evaluating the activity state of the DS brain comes from in vitro studies showing that chronic pharmacological silencing of neuronal excitability orchestrates stereotyped changes in the protein composition of synaptic junctions. In the present study, we use proteomic strategies to evaluate whether synapses from the Ts65Dn cerebrum carry signatures characteristic of inactive cortical neurons. Our data reveal that synaptic junctions do not exhibit overt alterations in protein composition. Only modest changes in the levels of synaptic proteins and in their phosphorylation are observed. This suggests that subtle changes in the functional properties of specific synaptic circuits rather than large-scale homeostatic shifts in the expression of synaptic molecules contribute to cognitive impairment in people with DS.  相似文献   

18.
Increasing evidence suggests that synaptic dysfunction is a core pathophysiological hallmark of neurodegenerative disorders. Brain-derived neurotropic factor (BDNF) is key synaptogenic molecule and targeting synaptic repair through modulation of BDNF signalling has been suggested as a potential drug discovery strategy. The development of such “synaptogenic” therapies depend on the availability of BDNF sensitive markers of synaptic function that could be utilized as biomarkers for examining target engagement or drug efficacy in humans. Here we have utilized the BDNF Val66Met genetic polymorphism to examine the effect of the polymorphism and genetic load (i.e. Met allele load) on electrophysiological (EEG) markers of synaptic activity and their structural (MRI) correlates. Sixty healthy adults were prospectively recruited into the three genetic groups (Val/Val, Val/Met, Met/Met). Subjects also underwent fMRI, tDCS/TMS, and cognitive assessments as part of a larger study. Overall, some of the EEG markers of synaptic activity and brain structure measured with MRI were the most sensitive markers of the polymorphism. Met carriers showed decreased oscillatory activity and synchrony in the neural network subserving error-processing, as measured during a flanker task (ERN); and showed increased slow-wave activity during resting. There was no evidence for a Met load effect on the EEG measures and the polymorphism had no effects on MMN and P300. Met carriers also showed reduced grey matter volume in the anterior cingulate and in the (left) prefrontal cortex. Furthermore, anterior cingulate grey matter volume, and oscillatory EEG power during the flanker task predicted subsequent behavioural adaptation, indicating a BDNF dependent link between brain structure, function and behaviour associated with error processing and monitoring. These findings suggest that EEG markers such as ERN and resting EEG could be used as BDNF sensitive functional markers in early clinical development to examine target engagement or drug related efficacy of synaptic repair therapies in humans.  相似文献   

19.
Exposure to addictive drugs causes changes in synaptic function within the striatal complex, which can either mimic or interfere with the induction of synaptic plasticity. These synaptic adaptations include changes in the nucleus accumbens (NAc), a ventral striatal subregion important for drug reward and reinforcement, as well as the dorsal striatum, which may promote habitual drug use. As the behavioral effects of drugs of abuse are long-lasting, identifying persistent changes in striatal circuits induced by in vivo drug experience is of considerable importance. Within the striatum, drugs of abuse have been shown to induce modifications in dendritic morphology, ionotropic glutamate receptors (iGluR) and the induction of synaptic plasticity. Understanding the detailed molecular mechanisms underlying these changes in striatal circuit function will provide insight into how drugs of abuse usurp normal learning mechanisms to produce pathological behavior.  相似文献   

20.
We have prepared highly purified synaptic vesicles from rat brain by subjecting vesicles purified by our previous method to a further fractionation step, i.e., equilibrium centrifugation on a Ficoll gradient. Monoclonal antibodies to three membrane proteins enriched in synaptic vesicles--SV2, synaptophysin, and p65--each were able to immunoprecipitate specifically approximately 90% of the total membrane protein from Ficoll-purified synaptic vesicle preparations. Anti-SV2 precipitated 96% of protein, anti-synaptophysin 92%, and anti-p65 83%. These results demonstrate two points: (1) Ficoll-purified synaptic vesicles appear to be greater than 90% pure, i.e., less than 10% of membranes in the preparation do not carry synaptic vesicle-associated proteins. These very pure synaptic vesicles may be useful for direct biochemical analyses of mammalian synaptic vesicle composition and function. (2) SV2, synaptophysin, and p65 coexist on most rat brain synaptic vesicles. This result suggests that the functions of these proteins are common to most brain synaptic vesicles. However, if SV2, synaptophysin, or p65 is involved in synaptic vesicle dynamics, e.g., in vesicle trafficking or exocytosis, separate cellular systems are very likely required to modulate the activity of such proteins in a temporally or spatially specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号