首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
北京东灵山辽东栎林植物物种多样性的多尺度分析   总被引:7,自引:1,他引:6  
张育新  马克明  祁建  冯云  张洁瑜 《生态学报》2009,29(5):2179-2185
多尺度分析物种多样性格局能够为有效保护生物多样性提供重要信息.利用物种多样性的加法分配法则分析了样方-坡位-坡面等级尺度系统辽东栎林植物物种多样性(gamma多样性)的alpha多样性和beta多样性在各尺度上的分配关系.结果表明以物种丰富度为指标的区域物种多样性的最大贡献来自坡面尺度,表明坡面尺度是维持辽东栎林物种多样性的有效尺度;而对Simpson多样性和Shannon多样性的最大贡献则来自样方内,这决定于群落物种优势度和稀有度格局;各尺度间beta多样性组分随尺度的增大而增大可能是环境异质性和扩散作用的综合结果.各尺度间Shannon多样性对总体多样性的贡献大于Simpson多样性的贡献是偶见种在各尺度间分配的结果.物种多样性分配的加法法则为物种多样性格局的多尺度分析提供了理论框架,是检验物种多样性格局形成机制的有效方法.  相似文献   

2.
物种多样性格局与所选择的尺度密切相关,用加性分配法分析柴松(Pinus tabulaeformis f.shekannesis)群落乔木、灌木和草本层在样方、坡位和坡面3种尺度的物种多样性分配关系,结果表明:1)以物种丰富度为指标时,坡面尺度对区域多样性贡献最大,说明在区域范围内坡面是物种组成和维持的关键尺度;而以Shannon和Simpson多样性为指标时,最大多样性分配在样方内,这是由于这2个指数不仅考虑了物种数,还考虑了样方内多度以及常见种和稀有种的影响和作用;2)以Shannon多样性为指标时,样方间、坡位间和坡面间尺度的β多样性对区域多样性贡献的百分比都大于以Simpson多样性为指标时的百分比,这主要是由稀有种在各尺度间的分布格局所决定的;3)样方间、坡位间和坡面间尺度的β多样性大小顺序各不相同,这与群落乔木层、灌木层和草本层的物种组成和分布情况以及不同尺度间环境异质性有密切关系。  相似文献   

3.
运用TWINSPAN对山西七里峪茶条槭群落类型进行划分,并采用Patrick指数、Simpson指数、Shannon-Wiener指数、Alatalo指数研究群落的物种多样性.结果表明:TWINSPAN将茶条槭群落的73个样方划分为10个群丛;各群丛的物种丰富度指数、多样性指数和均匀度指数之间存在差异,群丛Ⅲ和Ⅶ的丰富度指数和多样性指数较高,群丛Ⅰ的多样性指数较低;各群丛乔木层、灌木层和草本层之间的物种多样性也存在差异,多样性指数大致表现为草本层高于灌木层高于乔木层.土壤中的有机质、速效钾、含水量是影响茶条槭群落物种多样性的主要因素.  相似文献   

4.
运用TWINSPAN对山西七里峪茶条槭群落类型进行划分,并采用Patrick指数、Simpson指数、Shannon-Wiener指数、Alatalo指数研究群落的物种多样性。结果表明:TWINSPAN将茶条槭群落的73个样方划分为10个群丛;各群丛的物种丰富度指数、多样性指数和均匀度指数之间存在差异,群丛Ⅲ和Ⅶ的丰富度指数和多样性指数较高,群丛Ⅰ的多样性指数较低;各群丛乔木层、灌木层和草本层之间的物种多样性也存在差异,多样性指数大致表现为草本层高于灌木层高于乔木层。土壤中的有机质、速效钾、含水量是影响茶条槭群落物种多样性的主要因素。  相似文献   

5.
5种东北红豆杉植物群丛及其物种多样性的比较   总被引:1,自引:0,他引:1  
东北红豆杉(Taxus cuspidata)是我国数量极少的珍贵濒危树种, 了解其天然群落的组成和特征对东北红豆杉种群的保护利用和恢复有重要意义。本文对吉林省天然东北红豆杉群落进行调查, 根据物种组成进行系统聚类分析。将20块40 m × 40 m样地划分为5种群丛类型, 分别以优势种进行命名, 即: Ⅰ. 舞鹤草-五味子+狗枣猕猴桃-紫椴+臭冷杉群丛; II. 东北羊角芹-狗枣猕猴桃-臭冷杉群丛; III. 盾叶唐松草-狗枣猕猴桃-臭冷杉群丛; IV. 舞鹤草-软枣猕猴桃-红松+紫椴+臭冷杉群丛; V. 舞鹤草-软枣猕猴桃-紫椴+臭冷杉群丛。对群丛的物种组成、群落结构和群丛类型、物种多样性进行了分析。物种多样性选用Menhinick丰富度指数、Pielou均匀度指数、Simpson优势度指数以及Shannon-Wiener多样性指数, 对比分析不同群丛特征。结果显示: 东北红豆杉植物群落组成中蔷薇科的种和属数所占比例最大; 5个群丛的多样性指数顺序为群丛V > 群丛III > 群丛IV > 群丛II > 群丛Ⅰ; 群丛Ⅰ和II具有较低的多样性和较高的优势度, 群丛II和群丛III的乔木层的多样性指数差异不明显, 但其丰富度指数和优势度指数却呈现了相反的特征; 群丛II丰富度低而优势度高, 而群丛III丰富度高而优势度低; 群丛III中的草本层的多样性高于乔木层, 群落郁闭度较低; 群丛IV和群丛V均位于和龙市荒沟林场, 随着海拔上升, 其物种多样性随之下降。结果表明, 不同物种组成的东北红豆杉植物群丛的群落特征存在显著差异。  相似文献   

6.
桂林岩溶石山阴香群落的数量分类及其物种多样性研究   总被引:2,自引:1,他引:1  
张忠华  胡刚  梁士楚 《广西植物》2008,28(2):191-196
采用双向指示种分析(TWINSPAN),对桂林岩溶石山阴香群落进行数量分类,并应用Patrick丰富度指数、Simpson指数、Shannon-Wiener多样性指数以及Pielou均匀度指数比较分析了各群丛类型的物种多样性特征。结果表明:(1)阴香群落可划分为5种群丛类型,分别为:Ⅰ.阴香-山合欢-荩草群丛;Ⅱ.阴香-石山桂花+粗糠柴-麦冬群丛;Ⅲ.阴香-石山桂花-麦冬+凸脉苔草群丛;Ⅳ.阴香-石山桂花+小叶女贞-麦冬群丛;Ⅴ.阴香-香槐+石山桂花-剑叶凤尾蕨+普通假毛蕨群丛;(2)阴香群落的结构较为简单,物种多样性相对较低;在5个群丛类型中,群丛Ⅲ和群丛Ⅴ的物种丰富度和多样性指数较高,群丛Ⅱ的多样性指数较低;由于生境条件和人为干扰程度的不同,群丛类型的物种多样性存在一定差异。  相似文献   

7.
基于长白山阔叶红松林25hm^2样地(CBS)一年内草本植物的4次调查数据,对样地内草本植物多样性的季节动态及其空间分布格局进行了初步分析.结果表明:样地内草本植物物种组成丰富,共有102种,隶属于40科84属.Shannon多样性指数、Simpson多样性指数和Pielou均匀度指数分别为3.52、0.96和0.75;物种组成的季节变化比较明显,以初夏物种数最多;各季节的Shannon多样性指数、Simpson多样性指数和Pielou均匀度指数的变化较大,个体数量从早春到秋季逐渐减少;物种丰富度和多度的空间分布连续性较差,主要表现为斑块性分布,说明草本植物对微环境有较强的依赖性;坡向是影响物种丰富度和多度的主要因素,在早春、夏末和秋季,不同坡向的物种丰富度和多度差异极显著(P〈0.01),且早春阶段北坡和东坡的丰富度高于南坡和西坡,夏末和秋季则相反.  相似文献   

8.
山西庞泉沟自然保护区森林群落物种多样性   总被引:6,自引:0,他引:6  
在对山西庞泉沟自然保护区森林群落进行数量分类的基础上,运用丰富度指数、物种多样性指数和均匀度指数对保护区内森林群落的物种多样性进行了研究,并对森林群落各层片之间的物种多样性进行了相关性分析.结果表明:(1)森林群落15个群丛的丰富度指数、物种多样性指数和均匀度指数能很好地反映各群丛多样性变化规律.(2)各群丛的丰富度指数和物种多样性指数总体上呈现草本层>灌木层>乔木层,草本层的均匀度最小,大多数森林群落乔木层和灌木层的均匀度比较接近.(3) Patrick指数、Simpson指数、Shannon指数以及Pielou指数和Alatalo指数之间表现极显著差异性(P<0.01).(4)群丛3(华北落叶松-土庄绣线菊+美蔷薇-东方草莓群丛)灌木层和草本层之间呈显著负相关(r=-0.643,P<0.05);群丛8(白桦+山杨-灰栒子+美蔷薇-中亚苔草群丛)乔木层和灌木层呈显著负相关(r=-0.458,P<0.05),灌木层和草本层则呈显著正相关(r=0.404,P<0.05);群丛11(白杄-中亚苔草+烟管头草)的乔木层和草本层之间呈显著负相关(r=-0.949,P<0.05).  相似文献   

9.
在对山西历山国家级自然保护区猕猴栖息地森林群落进行数量分类的基础上,运用丰富度指数、物种多样性指数和均匀度指数方法对该地区森林群落的物种多样性进行了研究,并分析了森林群落各层片之间的物种多样性的相关性。结果表明:(1)栖息地森林12个群丛的丰富度指数、物种多样性指数和均匀度指数能够较好地反映各群落多样性变化规律。(2)栖息地森林群落的Patrick丰富度指数(R)与Shannon多样性指数(H)、Hill多样性指数(N1和N2)、Alatalo均匀度指数(E)和Pielou均匀度指数(Jsw)变化趋势基本一致,而Simpson多样性指数(λ)与H的变化呈相反趋势。(3)栖息地森林群落内乔、灌和草3层的丰富度指数、物种多样性指数和均匀度指数表现出多样化的趋势。各层片的丰富度指数和物种多样性指数总体上呈现草本层乔木层灌木层,但各片层的均匀度指数存在差异,其中灌木层的均匀度指数差异较大,而乔木层和草本层均匀度在各群落间差异较小。  相似文献   

10.
基于长白山阔叶红松林25 hm2样地(CBS)一年内草本植物的4次调查数据,对样地内草本植物多样性的季节动态及其空间分布格局进行了初步分析.结果表明:样地内草本植物物种组成丰富,共有102种,隶属于40科84属.Shannon多样性指数、Simpson多样性指数和Pielou均匀度指数分别为3.52、0.96和0.75;物种组成的季节变化比较明显,以初夏物种数最多;各季节的Shannon多样性指数、Simpson多样性指数和Pielou均匀度指数的变化较大,个体数量从早春到秋季逐渐减少;物种丰富度和多度的空间分布连续性较差,主要表现为斑块性分布,说明草本植物对微环境有较强的依赖性;坡向是影响物种丰富度和多度的主要因素, 在早春、夏末和秋季,不同坡向的物种丰富度和多度差异极显著(P<0.01),且早春阶段北坡和东坡的丰富度高于南坡和西坡,夏末和秋季则相反.  相似文献   

11.
以芦芽山荷叶坪亚高山草甸为研究对象,共设置150个5 m×5 m草本样方,进行群落生物学调查,对研究区36种草本植物重要值、α多样性指数、谱系多样性指数及其相关性进行研究.结果表明: 荷叶坪亚高山草甸物种多样性总体分布较均匀,边缘地区物种更丰富,呈现“边缘效应”;4个样地的群落谱系结构呈聚集模式,12个样地的群落谱系结构呈分散模式;谱系多样性指数(PD)与Petrick指数、Simpson指数和Shannon指数呈正相关,净亲缘关系指数(NRI)和最近种间亲缘关系指数(NTI)与α物种多样性指数无明显相关性.  相似文献   

12.
Three metrics of species diversity – species richness, the Shannon index and the Simpson index – are still widely used in ecology, despite decades of valid critiques leveled against them. Developing a robust diversity metric has been challenging because, unlike many variables ecologists measure, the diversity of a community often cannot be estimated in an unbiased way based on a random sample from that community. Over the past decade, ecologists have begun to incorporate two important tools for estimating diversity: coverage and Hill diversity. Coverage is a method for equalizing samples that is, on theoretical grounds, preferable to other commonly used methods such as equal-effort sampling, or rarefying datasets to equal sample size. Hill diversity comprises a spectrum of diversity metrics and is based on three key insights. First, species richness and variants of the Shannon and Simpson indices are all special cases of one general equation. Second, richness, Shannon and Simpson can be expressed on the same scale and in units of species. Third, there is no way to eliminate the effect of relative abundance from estimates of any of these diversity metrics, including species richness. Rather, a researcher must choose the relative sensitivity of the metric towards rare and common species, a concept which we describe as ‘leverage.' In this paper we explain coverage and Hill diversity, provide guidelines for how to use them together to measure species diversity, and demonstrate their use with examples from our own data. We show why researchers will obtain more robust results when they estimate the Hill diversity of equal-coverage samples, rather than using other methods such as equal-effort sampling or traditional sample rarefaction.  相似文献   

13.
Aim  Differentiation of sites or communities is often measured by partitioning regional or gamma diversity into additive or multiplicative alpha and beta components. The beta component and the ratio of within-group to total diversity (alpha/gamma) are then used to infer the compositional differentiation or similarity of the sites. There is debate about the appropriate measures and partitioning formulas for this purpose. We test the main partitioning methods, using empirical and simulated data, to see if some of these methods lead to false conclusions, and we show how to resolve the problems that we uncover.
Location  South America, Ecuador, Orellana province, Rio Shiripuno.
Methods  We construct sets of real and simulated tropical butterfly communities that can be unambiguously ranked according to their degree of differentiation. We then test whether beta and similarity measures from the different partitioning approaches rank these datasets correctly.
Results  The ratio of within-group diversity to total diversity does not reflect compositional similarity, when the Gini–Simpson index or Shannon entropy are used to measure diversity. Additive beta diversity based on the Gini–Simpson index does not reflect the degree of differentiation between N sites or communities.
Main conclusions  The ratio of within-group to total diversity (alpha/gamma) should not be used to measure the compositional similarity of groups, if diversity is equated with Shannon entropy or the Gini–Simpson index. Conversion of these measures to effective number of species solves these problems. Additive Gini–Simpson beta diversity does not directly reflect the differentiation of N samples or communities. However, when properly transformed onto the unit interval so as to remove the dependence on alpha and N , additive and multiplicative beta measures yield identical normalized measures of relative similarity and differentiation.  相似文献   

14.
Whittaker first proposed to measure the variation in species composition among plots or beta-diversity as the ratio between regional diversity (gamma-diversity) and average local diversity (alpha-diversity). More recently, an alternative way of partitioning diversity for which beta-diversity is obtained as the difference between gamma-diversity and average alpha-diversity has become very popular for linking the structure of species assemblages to ecosystem functioning in a spatially explicit manner. Unfortunately, additive beta-diversity computed from species presences and absences suffers from the major drawback of being dependent on regional species richness. For instance, if the separation between beta-diversity and gamma-diversity is incomplete, so that variation in species composition is affected by species richness, then differences in beta-diversity values among different sets of plots could reflect differences in the species count rather than any fundamental difference in species composition among the plots. Based on the above observation, in this paper I will first propose a basic requirement for beta-diversity measures that adequately captures our intuitive notion of independence of species richness. Next, I will show that additive beta-diversity computed from species presence and absence scores can be interpreted within the framework of fuzzy set theory. Finally, based on this unusual "fuzzy" interpretation of additive beta-diversity, I will introduce two families of parametric beta-diversity measures whose members have varying sensitivities to the presence of rare and frequent species.  相似文献   

15.
在青藏高原东北缘高寒草甸设置6个放牧强度样地,连续4年研究10个多样性指数(Richness和Abundance 2个实测指数,优势度指数、均匀度指数、丰富度指数和综合指数各2个)对放牧强度和年限影响植物群落的解释能力.结果表明: 相对于重要值,利用多度计算的多样性指数对放牧干扰更敏感.优势度指数(Berger-Parker、Dominance)与放牧强度和年限均无关,不能将放牧干扰对群落优势种的影响有效区分.均匀度指数(Equitability、Evenness)均与放牧强度无关,但Evenness指数与放牧年限呈显著负相关,不受偶见种影响且与物种多度的变异系数呈显著正相关,在基于时间尺度的均匀度比较中可以选择Evenness指数.丰富度指数(Menhinick、Margalef)均与放牧年限无关,但Margalef指数与放牧强度呈显著正相关,且不受偶见种影响.综合指数(Shannon、Simpson)均与放牧强度无关,但Shannon指数与物种丰富度和多度呈显著正相关,且随放牧年限增加而显著升高,不受偶见种影响,Shannon指数可用于在长时间尺度下比较物种多样性变化.在所有多样性指数中,只有实测物种丰富度和多度均与放牧强度呈显著负相关,与放牧年限呈显著正相关,且不受偶见种影响,故实测物种丰富度和多度相结合可作为放牧干扰下多样性比较的首选指标.此外,多样性指数选择须考虑放牧干扰的强度与时间特征、多样性组分和研究目的.  相似文献   

16.
Aims Despite wide consensus that ecological patterns and processes should be studied at multiple spatial scales, the temporal component of diversity variation has remained poorly examined. Specifically, rare species may exhibit patterns of diversity variation profoundly different from those of dominant taxa. Location Southern Finland. Methods We used multiplicative partitioning of true diversities (species richness, Shannon diversity) to identify the most important scale(s) of variation of benthic macroinvertebrate communities across several hierarchical scales, from individual samples to multiple littorals, lakes and years. We also assessed the among‐scale variability of benthic macroinvertebrate community composition by using measures of between‐ and within‐group distances at hierarchical scales. Results On average, a single benthic sample contained 23% of the total regional macroinvertebrate species pool. For both species richness and Shannon diversity, beta‐diversity was clearly the major component of regional diversity, with within‐littoral beta‐diversity (β1) being the largest component of gamma‐diversity. The interannual component of total diversity was small, being almost negligible for Shannon index. Among‐sample (within‐littoral) diversity was related to variation of substratum heterogeneity at the same scale. By contrast, only a small proportion of rare taxa was found in an average benthic sample. Thus, dominant species among lakes and years were about the same, whereas rare species were mostly detected in a few benthic samples in one lake (or year). For rare species, the temporal component of diversity was more important than spatial turnover at most scales. Main conclusions While individual species occurrences and abundances, particularly those of rare taxa, may vary strongly through space and time, patterns of dominance in lake littoral benthic communities are highly predictable. Consequently, many rare species will be missed in temporally restricted samples of lake littorals. In comprehensive biodiversity surveys, interannual sampling of littoral macroinvertebrate communities is therefore needed.  相似文献   

17.
Ecologists have traditionally viewed β-diversity as the ratio between γ-diversity and average α-diversity. More recently, an alternative way of partitioning diversity has been proposed for which β-diversity is obtained as the difference between γ-diversity and average α-diversity. Although this additive model of diversity decomposition is generally considered superior to its multiplicative counterpart, in both models β-diversity is a formally derived quantity without any self-contained ecological meaning; it simply quantifies the diversity excess of γ-diversity with respect to average α-diversity. Taking this excess as an index of β-diversity is a questionable operation. In this paper, we show that a particular family of α-diversity measures, the most celebrated of which is Rao's quadratic entropy, can be adequately used for summarizing β-diversity. Our proposal naturally leads to a new additive model of diversity for which, given two or more sets of plots, overall plot-to-plot species variability can be additively partitioned into two non-negative components: average variability in species composition within each set of plots and the species variability between the set of plots. For conservation purposes, the suggested change of perspective in the summarization of β-diversity allows for a flexible analysis of spatial heterogeneity in ecological diversity so that different hierarchical levels of biotic relevance (i.e. from the genetic to the landscape level) can be expressed in a significant and consistent way.  相似文献   

18.
《Acta Oecologica》2004,25(1-2):61-65
A desirable property of a diversity index is the so-called sum property. For a diversity index that possesses the sum property, such as species richness N, Shannon’s entropy H or Simpson’s index 1/D, the community diversity is decomposable into species-level patterns and the sum of single species diversities gives the pooled diversity of the species collection. In this paper, parametric diversity of type α is used to quantify how fertilizer applied to soil affects the relative contribution of species endemic or preferential to serpentine soils within a garigue plant community in Tuscany (Italy). Soil fertilizer significantly improved the biomass production of the original species pool without any significant colonization by alien species. However, the major biomass increments were experienced by species that are not exclusive to serpentine soils. In this view, the reduced abundance of species endemic or preferential to serpentine soils can be interpreted as a loss of ‘ecological quality’ of the analyzed community.  相似文献   

19.
This paper focuses on the difference between the value of some commonly used diversity indices (Simpson, Shannon, abundance, richness) calculated from benthic grab samples and their value in the population or region from which the samples are taken. The ability of the sample indices, as well as a recently derived relative Shannon index, to reflect change in biodiversity is examined in a short simulation study based on changing one of the diversity parameters (abundance, richness and evenness) in the population, whilst keeping the other two components constant. Our results suggest that, whilst their population equivalents do not always reflect biodiversity changes, the sample Simpson, Shannon and Richness indices perform well. We note that this will be true for any surveys where the sampling programme fails to detect many species in a population, and hence will be applicable for most benthic surveys. The use of sample indices to detect changes in biodiversity from long-running time series in the Thames and Tyne estuaries is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号