首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Downregulation of the major autolysin in Streptococcus pneumoniae leads to penicillin tolerance, a feature that is characterized by the ability to survive but not grow in the presence of antibiotic. Screening a library of mutants in pneumococcal surface proteins for the ability to survive 10 × minimum inhibitory concentration (MIC) of penicillin revealed over 10 candidate tolerance genes. One such mutant contained an insertion in the known gene psaA , which is part of the psa locus. This locus encodes an ABC-type Mn permease complex. Sequence analysis of adjacent DNA extended the known genetic organization of the locus to include two new open reading frames (ORFs), psaB , which encodes an ATP-binding protein, and psaC , which encodes a hydrophobic transmembrane protein. Mutagenesis of psaB , psaC , psaA and downstream psaD resulted in penicillin tolerance. Defective adhesion and reduced transformation efficiency, as reported previously for a psaA mutant, were phenotypes shared by psaB  , psaC   and psaD   knockout mutants. Western blot analysis demonstrated that the set of mutants expressed RecA, but none of them showed translation of the autolysin gene, which is located downstream of recA . The addition of manganese (Mn) failed to correct the abnormal physiology. These results suggest that this ABC-type Mn permease complex has a pleiotropic effect on pneumococcal physiology including adherence and autolysis. These are the first genes suggested as being involved in triggering autolysin. The results raise the possibility that loss of function of PsaA, by vaccine-induced antibody for instance, may promote penicillin tolerance.  相似文献   

2.
Transition row metal ions are both essential and toxic to microorganisms. Zinc in excess has significant toxicity to bacteria, and host release of Zn(II) at mucosal surfaces is an important innate defence mechanism. However, the molecular mechanisms by which Zn(II) affords protection have not been defined. We show that in Streptococcus pneumoniae extracellular Zn(II) inhibits the acquisition of the essential metal Mn(II) by competing for binding to the solute binding protein PsaA. We show that, although Mn(II) is the high-affinity substrate for PsaA, Zn(II) can still bind, albeit with a difference in affinity of nearly two orders of magnitude. Despite the difference in metal ion affinities, high-resolution structures of PsaA in complex with Mn(II) or Zn(II) showed almost no difference. However, Zn(II)-PsaA is significantly more thermally stable than Mn(II)-PsaA, suggesting that Zn(II) binding may be irreversible. In vitro growth analyses show that extracellular Zn(II) is able to inhibit Mn(II) intracellular accumulation with little effect on intracellular Zn(II). The phenotype of S. pneumoniae grown at high Zn(II):Mn(II) ratios, i.e. induced Mn(II) starvation, closely mimicked a ΔpsaA mutant, which is unable to accumulate Mn(II). S. pneumoniae infection in vivo elicits massive elevation of the Zn(II):Mn(II) ratio and, in vitro, these Zn(II):Mn(II) ratios inhibited growth due to Mn(II) starvation, resulting in heightened sensitivity to oxidative stress and polymorphonuclear leucocyte killing. These results demonstrate that microbial susceptibility to Zn(II) toxicity is mediated by extracellular cation competition and that this can be harnessed by the innate immune response.  相似文献   

3.
Streptococcus mutans belongs to the viridans group of oral streptococci, which is the leading cause of endocarditis in humans. The LraI family of lipoproteins in viridans group streptococci and other bacteria have been shown to function as virulence factors, adhesins, or ABC-type metal transporters. We previously reported the identification of the S. mutans LraI operon, sloABCR, which encodes components of a putative metal uptake system composed of SloA, an ATP-binding protein, SloB, an integral membrane protein, and SloC, a solute-binding lipoprotein, as well as a metal-dependent regulator, SloR. We report here the functional analysis of this operon. By Western blotting, addition of Mn to the growth medium repressed SloC expression in a wild-type strain but not in a sloR mutant. Other metals tested had little effect. Cells were also tested for aerobic growth in media stripped of metals then reconstituted with Mg and either Mn or Fe. Fe at 10 micro M supported growth of the wild-type strain but not of a sloA or sloC mutant. Mn at 0.1 micro M supported growth of the wild-type strain and sloR mutant but not of sloA or sloC mutants. The combined results suggest that the SloABC proteins transport both metals, although the SloR protein represses this system only in response to Mn. These conclusions are supported by (55)Fe uptake studies with Mn as a competitor. Finally, a sloA mutant demonstrated loss of virulence in a rat model of endocarditis, suggesting that metal transport is required for endocarditis pathogenesis.  相似文献   

4.
The psaBCA locus of Streptococcus pneumoniae encodes a putative ABC Mn2+-permease complex. Downstream of the operon is psaD, which may be co-transcribed and encodes a thiol peroxidase. Previously, there has been discordance concerning the phenotypic impact of mutations in the psa locus, resolution of which has been complicated by differences in mutant construction and the possibility of polar effects. Here, we constructed unmarked, in frame deletion mutants DeltapsaB, DeltapsaC, DeltapsaA, DeltapsaD, DeltapsaBC, DeltapsaBCA and DeltapsaBCAD in S. pneumoniae D39 to examine the role of each gene within the locus in Mn2+ uptake, susceptibility to oxidative stress, virulence, nasopharyngeal colonization and chain morphology. The requirement for Mn2+ for growth and transformation was also investigated for all mutants. Inductively coupled plasma mass spectrometry (ICP-MS) analysis provided the first direct evidence that PsaBCA is indeed a Mn2+ transporter. However, this study did not substantiate previous reports that the locus plays a role in choline-binding protein pro-duction or chain morphology. We also confirmed the importance of the Psa permease in systemic virulence and resistance to superoxide and hydrogen peroxide, as well as demonstrating a role in nasopharyngeal colonization for the first time. Further evi-dence is provided to support the requirement for Mn2+ supplementation for growth and transformation of DeltapsaB, DeltapsaC, DeltapsaA, DeltapsaBC, DeltapsaBCA and DeltapsaBCAD mutants. However, transformation, as well as growth, of the DeltapsaD mutant was not dependent upon Mn2+ supplementation. We also show that, apart from sensitivity to hydrogen peroxide, the DeltapsaD mutant exhibited essentially similar phenotypes to those of the wild type. Western blot analysis with a PsaD antiserum showed that deleting any of the genes upstream of psaD did not affect its expression. However, we found that deleting psaB resulted in decreased expression of PsaA relative to that in D39, whereas deleting both psaB and psaC resulted in at least wild-type levels of PsaA.  相似文献   

5.
6.
Streptococcus pneumoniae is a major bacterial respiratory pathogen. Current licensed pneumococcal polysaccharide and polysaccharide–protein conjugate vaccines are administered by an intramuscular injection. In order to develop a new-generation vaccine that can be administered in a needle-free mucosal manner, we have constructed early 1 and 3 gene regions (E1/E3) deleted, replication-defective adenoviral vectors encoding pneumococcal surface antigen A (PsaA), the N-fragment of pneumococcal surface protein A (N-PspA), and the detoxified mutant pneumolysin (PdB) from S. pneumoniae strain D39. Intranasal vaccination with the three adenoviral vectors (Ad/PsaA, Ad/N-PspA, and Ad/PdB) in mice resulted in robust antigen-specific serum immunoglobulin G responses, as demonstrated by an enzyme-linked immunosorbent assay. In addition, nasal mucosal vaccination with the combination of the three adenoviral vectors conferred protection against S. pneumoniae strain D39 colonization in mouse lungs. Taken together, these data demonstrate the feasibility of developing a mucosal vaccine against S. pneumoniae using recombinant adenoviruses for antigen delivery.  相似文献   

7.
8.
肺炎链球菌是细菌性肺炎的主要病原体。PsaA是各种肺炎链球菌共有的遗传保守的特异性表面金属结合脂蛋白。通过PCR扩增肺炎链球菌D39不含信号肽的PsaA基因片段,将其通过T4连接酶连接至含6His标签的表达载体PBAD/HisA中,转化表达宿主大肠杆菌Top-10后用L(+)-阿拉伯糖诱导重组蛋白的表达。重组蛋白经亲和镍柱纯化以后,用外切酶-重组肠激酶(REK)去除6His标签。感应偶合电浆质谱(ICP-MS)测得纯化的PsaA蛋白以1:1比例结合金属锌离子。进而,通过圆二色谱法分析金属离子的结合对蛋白二级结构中α-螺旋和β-片层含量的影响,荧光光谱研究蛋白结合锌离子的解离常数及结合当量,为进一步研究该蛋白在体外的金属结合特性及细菌的金属运输及毒力机制提供理论基础。  相似文献   

9.
An unmodified heptadecapeptide pheromone capable of eliciting competence for genetic transformation in Streptococcus pneumoniae has recently been identified and characterized. In considering possible signaltransduction mechanisms for the peptide, the previously characterized Ami oligopeptide permease and the three highly homologous oligopeptide-binding lipoproteins, AmiA. AliA, and AliB, appeared to be good candidates for receptors. We therefore compared the spontaneous transformability of Ami, AliA and AliB mutants to that of an isogenic wild-type strain and we investigated the response of the various mutants to treatment with synthetic competence-stimulating peptide (CSP). Our results clearly demonstrate that neither Ami nor any of the three highly homologous oligopeptide-binding lipoproteins identified so far in S. pneumoniae are required for competence induction following treatment with synthetic CSP. Although the existence of a fourth unidentified oligopeptide-binding lipoprotein and/or a second oligopeptide permease operon could not be completely ruled out, we favour the hypothesis that CSP signal transmission rather involves a two-component regulatory system. Although none of the single or double Ami and Ali mutants tested appeared severely affected for competence, an exceptional aliB plasmid-insertion mutation abolished competence completely. In addition, the triple AmiA-AliA-AliB mutant differed from wild type in showing no sharp peak of competence but exhibiting transformability throughout the exponential phase of growth. These and previous observations are discussed and a general hypothesis is proposed to account for the modulation of competence by peptide permease mutants in S. pneumoniae.  相似文献   

10.
Zinc is an essential trace metal for living cells. The ABC transporter AdcABC was previously shown to be required for zinc uptake by Streptococcus pneumoniae. As we have recently described AdcAII as another zinc-binding lipoprotein, we have investigated the role of both AdcA and AdcAII in S. pneumoniae zinc metabolism. Deletion of either adcA or adcAII but not phtD reduced S. pneumoniae zinc uptake, with dual mutation of both adcA and adcAII further decreasing zinc import. For the Δ(adcA/adcAII) mutant, growth and intracellular concentrations of zinc were both greatly reduced in low zinc concentration. When grown in zinc-deficient medium, the Δ(adcA/adcAII) mutant displayed morphological defects related to aberrant septation. Growth and morphology of the Δ(adcA/adcAII) mutant recovered after supplementation with zinc. Dual deletion of adcA and adcAII strongly impaired growth of the pneumococcus in bronchoalveolar lavage fluid and human serum, and prevented S. pneumoniae establishing infection in mouse models of nasopharyngeal colonization, pneumonia and sepsis without altering the capsule. Taken together, our results show that AdcA and AdcAII play an essential and redundant role in specifically importing zinc into the pneumococcus, and that both zinc transporters are required for proper cell division and for S. pneumoniae survival during infection.  相似文献   

11.
12.
13.
The nutritional requirement that Streptococcus pneumoniae has for the aminoalcohol choline as a component of teichoic and lipoteichoic acids appears to be exclusive to this prokaryote. A mutation in the tacF gene, which putatively encodes an integral membrane protein (possibly, a teichoic acid repeat unit transporter), has been recently identified as responsible for generating a choline-independent phenotype of S. pneumoniae (M. Damjanovic, A. S. Kharat, A. Eberhardt, A. Tomasz, and W. Vollmer, J. Bacteriol. 189:7105-7111, 2007). We now report that Streptococcus mitis can grow in choline-free medium, as previously illustrated for Streptococcus oralis. While we confirmed the finding by Damjanovic et al. of the involvement of TacF in the choline dependence of the pneumococcus, the genetic transformation of S. pneumoniae R6 by using S. mitis SK598 DNA and several PCR-amplified tacF fragments suggested that a minimum of two mutations were required to confer improved fitness to choline-independent S. pneumoniae mutants. This conclusion is supported by sequencing results also reported here that indicate that a spontaneous mutant of S. pneumoniae (strain JY2190) able to proliferate in the absence of choline (or analogs) is also a double mutant for the tacF gene. Microscopic observations and competition experiments during the cocultivation of choline-independent strains confirmed that a minimum of two amino acid changes were required to confer improved fitness to choline-independent pneumococcal strains when growing in medium lacking any aminoalcohol. Our results suggest complex relationships among the different regions of the TacF teichoic acid repeat unit transporter.  相似文献   

14.
Streptococcus pneumoniae pneumococcal surface adhesin A (PsaA) is a species-common, immunogenic surface lipoprotein. In this study, the psaA gene was expressed as a nonfusion acylated protein in an Escherichia coli expression system. Yields of pure recombinant PsaA (rPsaA) were 8-10 mg/liter of fermentation culture. Analysis of rPsaA tryptic digests by HPLC-electrospray mass spectrometry (MS) confirmed 98% of the expected protein sequence. GC/MS data demonstrated very similar acylation of native and rPsaA by C12:0-C22:0 fatty acids, with C16 and C18 predominating. Negative ion electrospray MS/MS analysis of the rPsaA lipid anchor released by Pronase-E confirmed that the structure was based on an N-terminal palmitoylcysteine (Pam(3)Cys). Electrospray MS heterogeneity analysis of intact rPsaA indicated that all of the observed heterogeneity could be accounted for by the fatty acid distributions. The availability of well-characterized rPsaA will facilitate the continued research and development of protein-based vaccines for the prevention of pneumococcal disease.  相似文献   

15.
Using a newly constructed minitransposon with a phoA reporter gene in a Salmonella enteritidis phoN mutant, we have identified an iron- and pH-inducible lipoprotein gene sfbA, which is a component of a novel ABC-type transporter system required for virulence. This gene is located on a 4 kb Salmonella-specific chromosomal segment, which constitutes a new pathogenicity islet. This islet encodes an outer membrane protein, OmpX, and contains the operon designated sfbABC (Salmonella ferric binding) encoding a putative periplasmic iron-binding lipoprotein SfbA, a nucleotide-binding ATPase SfbB and a cytoplasmic permease SfbC, as predicted by their characteristic signature sequences. Inactivation of the sfbA gene resulted in a mutant that is avirulent and induces protective immunity in BALB/c mice. The wild-type phenotype could be restored by in vivo complementation with the sfbABC operon. This novel transporter might be involved in iron uptake in Salmonella.  相似文献   

16.
17.
18.
Unsaturated fatty acid (UFA) biosynthesis is essential for the maintenance of membrane structure and function in many groups of anaerobic bacteria. Like Escherichia coli, the human pathogen Streptococcus pneumoniae produces straight-chain saturated fatty acids (SFA) and monounsaturated fatty acids. In E. coli UFA synthesis requires the action of two gene products, the essential isomerase/dehydratase encoded by fabA and an elongation condensing enzyme encoded by fabB. S. pneumoniae lacks both genes and instead employs a single enzyme with only an isomerase function encoded by the fabM gene. In this paper we report the construction and characterization of an S. pneumoniae 708 fabM mutant. This mutant failed to grow in complex medium, and the defect was overcome by addition of UFAs to the growth medium. S. pneumoniae fabM mutants did not produce detectable levels of monounsaturated fatty acids as determined by gas chromatography-mass spectrometry and thin-layer chromatography analysis of the radiolabeled phospholipids. We also demonstrate that a fabM null mutant of the cariogenic organism Streptococcus mutants is a UFA auxotroph, indicating that FabM is the only enzyme involved in the control of membrane fluidity in streptococci. Finally we report that the fabN gene of Enterococcus faecalis, coding for a dehydratase/isomerase, complements the growth of S. pneumoniae fabM mutants. Taken together, these results suggest that FabM is a potential target for chemotherapeutic agents against streptococci and that S. pneumoniae UFA auxotrophs could help identify novel genes encoding enzymes involved in UFA biosynthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号