首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
生长素信号传导研究进展(综述)   总被引:4,自引:0,他引:4  
近年来,植物激素的信号传导研究已取得突破性进展。本文就生长素的信号传导通路研究,包括生长素应答基因(Aux/IAA),生长素调节因子(ARF)以及感应突变体的研究进行综述。  相似文献   

2.
泛素降解途径与生长素的调节   总被引:2,自引:2,他引:0  
就近几年来泛素降解途径在生长素调节中的作用作了介绍,主要是3个蛋白家族突变体的一系列分子分析研究,即生长素应答因子(auxin responsefactors,ARFs)、生长素/吲哚乙酸(Aux/IAA)家族和泛素蛋白酶解组分.ARFs可以直接与DNA结合,介导生长素调节的基因表达;Aux/IAA通过与ARFs形成异源二聚体阻碍ARFs执行功能;泛素降解途径包括泛素激活酶El、泛素连接酶E2、泛素连接酶E3及26S蛋白酶体.生长素通过促进Aux/IAA与E3-SCFTIR1的相互作用降解Aux/IAA蛋白,释放出的ARFs与DNA结合,调节生长素相关基因表达.COP9(constitutive photomorphogenic locus 9)信号体也通过调节SCFTIl活性参与此过程.  相似文献   

3.
生长素是调控果实发育成熟的重要植物激素之一。在生长素介导的信号转导机制中,ARF和Aux/IAA扮演重要的角色。ARF与生长素响应基因启动子区域内的生长素响应元件结合,促进或抑制基因的表达。Aux/IAA通过结构域Ⅲ和Ⅳ与ARF特异性结合,从而调节生长素早期应答基因的转录功能。研究表明,ARF因子参与调控果实形态发育、硬度和糖分积累等,Aux/IAA因子在授粉、果实形态发育等方面作用明显。此外ARF和Aux/IAA之间相互或与自身发生的互作以调控下游基因表达是植物体响应生长素信号的主要机制。介绍了ARF和Aux/IAA的结构特征、在不同植物中的分布状况以及与果实发育成熟的关系,同时讨论了ARF和Aux/IAA互作的研究现状,旨为进一步阐明生长素调控果实发育成熟的机制提供参考。  相似文献   

4.
植物生长素反应因子研究进展   总被引:2,自引:0,他引:2  
生长素反应因子(ARFs)是植物生长和发育的重要调节因子,在生长素早期反应蛋白(Aux/IAAs)的参与下,通过和生长素反应基因启动子区AuxRE元件的JTGTCTC序列结合,共同调控这些基因的表达。近年来关于生长素反应因子的分子结构和ARF与Aux/IAA的相互作用及其对植物生长和发育的影响、作用的靶基因以及分子机制受到人们的重视,并在这些方面做了大量的研究。  相似文献   

5.
生长素影响植物多种生理过程,有报道显示生长素可能影响植物对逆境胁迫的反应.我们利用cDNA阵列技术鉴定拟南芥(Arabidopsis thaliana (L.) Heynh.)的生长素应答基因,发现多个胁迫应答基因受生长素抑制,包括Arabidopsis homolog of MEK kinase1 (ATMEKK1),RelA/SpoT homolog 3 (At-RSH3),Catalase 1 (Cat1) 和Ferritin 1 (Fer1),说明生长素可调节胁迫应答基因的表达.此外,我们还证明吲哚乙酸(IAA)合成途径中的腈水解酶基因nitrilase 1 (NIT1) 和nitrilase 2 (NIT2) 受盐胁迫诱导,提示在逆境条件下IAA的合成可能随之增加.我们利用生长素不敏感突变体研究生长素与逆境反应相互作用的信号转导,发现胁迫应答基因在野生型和生长素不敏感突变体auxin resistant 2 (axr2) 中可被盐胁迫诱导,而在auxin resistant 1-3 (axr1-3)中则不被诱导,说明生长素与逆境胁迫反应的相互作用可能发生在泛素途径.  相似文献   

6.
植物激素生长素参与调控植物生长发育的各个过程,包括胚胎发育、器官发生和向性运动等。植物通过协调生长素的合成代谢、极性运输以及信号转导来实现对不同生长发育过程的精准调控。生长素的功能依赖于其信号被感知后经由信号转导通路转换为下游复杂多样的反应。经典的生长素信号转导通路阐明了细胞核内从SCF~(TIR1/AFB)受体到Aux/IAA蛋白的泛素化降解最终通过ARF转录因子调控基因转录的完整生长素响应过程。该核内信号通路揭示了生长素转录调控生长发育的诸多分子机制,但植物生长发育调控过程中仍有许多生长素响应过程无法通过该经典信号通路解析。重点阐述生长素非经典信号通路的调控机制及其对植物生长发育的重要作用,并讨论和展望生长素非经典信号通路研究目前所面临的挑战以及研究前景。  相似文献   

7.
通常可通过植物叶片的形态来区分不同植物的种类。叶片由茎顶端分生组织侧翼发育而成,为多种多样大小和形状的扁平结构。叶片的结构看似简单,但调控叶片形态和结构发育的分子机理错综复杂,叶片的发育受植物激素、转录因子、一系列蛋白因子及环境的共同调控。本文回顾了叶片边缘形态和叶脉发育研究的最新进展。在叶边缘形态方面,Aux/IAA生长素响应抑制家族蛋白通过调节生长素浓度最大点的离散分布影响小叶的起始和生长以及叶边缘结构;NAM/CUC转录因子促进叶边缘锯齿的分离以及复叶中小叶的分离和分化,NAM/CUC和Aux/IAA通过不同通路实现对生长素的调控;拟南芥RAX1基因/番茄Potato-leaf基因和拟南芥JAG基因/番茄LYR基因促进叶边缘锯齿发育;RCO调控复叶小叶的发育不通过改变生长素的分布来实现;在番茄中反式小干扰RNA途径中的因子参与叶边缘形态发育;另外,在拟南芥中,mir164A、CUC2、PIN1、DPA4、SVR9-1及SVR9L-1构成复杂的调控网络影响叶边缘锯齿的发育。在叶脉发育方面,PIN1能否正确的定位会影响叶脉发育;AS1和AS2共同参与叶片远近轴极性的分化;另外AXR6、MP、BDL、CVP因子功能的缺失影响叶脉发育;生长素、PIN1、Aux/IAA、MP、ATHB8构成反馈循环调控子叶叶脉的形成。  相似文献   

8.
生长素信号转导途径与植物胁迫反应相互作用的证据(英)   总被引:6,自引:0,他引:6  
生长素影响植物多种生理过程 ,有报道显示生长素可能影响植物对逆境胁迫的反应。我们利用cDNA阵列技术鉴定拟南芥 (Arabidopsisthaliana (L .)Heynh .)的生长素应答基因 ,发现多个胁迫应答基因受生长素抑制 ,包括ArabidopsishomologofMEKkinase1(ATMEKK1) ,RelA/SpoThomolog 3(At_RSH3) ,Catalase 1(Cat1)和Ferritin 1(Fer1) ,说明生长素可调节胁迫应答基因的表达。此外 ,我们还证明吲哚乙酸 (IAA)合成途径中的腈水解酶基因nitrilase 1(NIT1)和nitrilase 2 (NIT2 )受盐胁迫诱导 ,提示在逆境条件下IAA的合成可能随之增加。我们利用生长素不敏感突变体研究生长素与逆境反应相互作用的信号转导 ,发现胁迫应答基因在野生型和生长素不敏感突变体auxinresistant2 (axr2 )中可被盐胁迫诱导 ,而在auxinresistant1_3(axr1_3)中则不被诱导 ,说明生长素与逆境胁迫反应的相互作用可能发生在泛素途径。  相似文献   

9.
木醋液的植物生长调节剂特性的分子机理研究   总被引:1,自引:0,他引:1  
木醋液(wood vinegar,WV)是一种农业生产上广泛应用的植物生长调节剂类似物,但对其分子水平调节机制研究的缺乏严重限制了它的更进一步应用。试验以模式生物拟南芥为材料,通过半定量PCR(Semi-quantitative PCR,SQ-PCR)和条件控制培养,研究了不同浓度、不同时间的木醋液、生长素吲哚乙酸(IAA)处理对生长素诱导基因表达和形态学变化的影响。结果表明,木醋液可调节拟南芥生长素诱导基因Aux/IAA1、Aux/IAA5、Aux/IAA19、ARF19和SAUR-AC1的表达。通过Aux/IAA和ARF蛋白相互作用,木醋液调节途径中存在与生长素类似的负反馈。在形态学方面,木醋液、生长素IAA均可抑制叶片数量和叶片伸展,促进主根伸长和侧根形成。这表明木醋液不但以与生长素IAA相似的途径促进植物生长,且以自身的调节方式促进植物生长发育。  相似文献   

10.
木醋液(wood vinegar,WV)是一种农业生产上广泛应用的植物生长调节剂类似物,但对其分子水平调节机制研究的缺乏严重限制了它的更进一步应用。试验以模式生物拟南芥为材料,通过半定量PCR(Semi-quantitative PCR,SQ-PCR)和条件控制培养,研究了不同浓度、不同时间的木醋液、生长素吲哚乙酸(IAA)处理对生长素诱导基因表达和形态学变化的影响。结果表明,木醋液可调节拟南芥生长素诱导基因Aux/IAA1、Aux/IAA5、Aux/IAA19、ARF19和SAUR-AC1的表达。通过Aux/IAA和ARF蛋白相互作用,木醋液调节途径中存在与生长素类似的负反馈。在形态学方面,木醋液、生长素IAA均可抑制叶片数量和叶片伸展,促进主根伸长和侧根形成。这表明木醋液不但以与生长素IAA相似的途径促进植物生长,且以自身的调节方式促进植物生长发育。  相似文献   

11.
Auxin-responsive gene expression: genes,promoters and regulatory factors   总被引:36,自引:0,他引:36  
  相似文献   

12.
13.
生长素响应因子与植物的生长发育   总被引:4,自引:0,他引:4  
刘振华  于延冲  向凤宁 《遗传》2011,33(12):1335-1346
生长素响应因子(Auxin response factor, ARF)作为一类调控生长素响应基因表达的转录因子, 是生长素研究的重要内容。它可与生长素响应基因启动子区域内的生长素响应元件结合, 促进或抑制基因的表达。文章介绍了植物体内ARF家族的分子生物学近年来的研究进展, 同时也讨论了ARF转录因子的结构、ARF基因的表达调控、ARF在植物生长发育及信号转导中的作用以及ARF对靶基因的调控机制等内容。植物ARF成员都有一定的同源性, 大多含有4个结构域, 在多种组织和器官中都有表达, 其表达受到转录及转录后调控, 并且在介导生长素与其它激素之间相互作用方面扮演重要角色。  相似文献   

14.
Functional approaches toward the identification of auxin receptors developed along two major lines: the isolation and characterization of mutants or transgenic plants affected in their responses to the hormone and the study of early auxin effects at the cell level such as expression of specific genes or modifications of plasma membrane properties. The combination of these approaches with those aiming at the molecular characterization of auxin binding proteins as putative auxin receptors allowed to bring further insight into the mechanisms of auxin perception by plant cells. Studies of membrane responses to auxin clearly demonstrated the existence of elementary response chains to auxin at the plasma membrane, the activation of auxin responsive proteins leading to changes in the membrane potential via the stimulation of the proton pump ATPase or the modulation of ion channels. A two-component model is proposed for the organization of functional auxin perception units at the plasma membrane, comprising an auxin-binding moiety related to the major auxin-binding protein from maize (ZmER-abp1), associated to a transmembrane protein. Current research investigates the relevance of this model and tries to assess whether early responses at the plasma membrane share common perception or transduction steps with gene expression responses and participate in more integrated biological responses to auxin.  相似文献   

15.
Genetic approaches to auxin action   总被引:12,自引:0,他引:12  
Answers to long-standing questions concerning the molecular mechanism of auxin action and auxin's exact functions in plant growth and development are beginning to be uncovered through studies using mutant and transgenic plants. We review recent work in this area in vascular plants. A number of conclusions can be drawn from these studies. First, auxin appears essential for cell division and viability, as auxin auxotrophs isolated in tissue culture are dependent on auxin for growth and cannot be regenerated into plants even when auxin is supplied exogenously. Secondly, plants with transgenes that alter auxin levels are able to regulate cellular auxin concentrations by synthesis and conjugation; wild-type plants are probably also capable of such regulation. Thirdly, the phenotypes of transgenic plants with altered auxin levels and of mutant plants with altered sensitivity to auxin confirm earlier physiological studies which indicated a role for auxin in regulation of apical dominance, in development of roots and vascular tissue, and in the gravitropic response. Finally, the cloning of a mutationally identified gene important for auxin action, along with accumulating biochemical evidence, hints at a major role for protein degradation in the auxin response pathway.  相似文献   

16.
Plant responses to auxin and phosphate (Pi) starvation are closely linked. However, the underlying mechanisms connecting auxin to phosphate starvation (?Pi) responses are largely unclear. Here, we show that OsARF16, an auxin response factor, functions in both auxin and ?Pi responses in rice (Oryza sativa L.). The knockout of OsARF16 led to primary roots (PR), lateral roots (LR) and root hair losing sensitivity to auxin and ?Pi response. OsARF16 expression and OsARF16::GUS staining in PR and LR of rice Nipponbare (NIP) were induced by indole acetic acid and ?Pi treatments. In ?Pi conditions, the shoot biomass of osarf16 was slightly reduced, and neither root growth nor iron content was induced, indicating that the knockout of OsARF16 led to loss of response to Pi deficiency in rice. Six phosphate starvation‐induced genes (PSIs) were less induced by ?Pi in osarf16 and these trends were similar to a knockdown mutant of OsPHR2 or AtPHR1, which was a key regulator under ?Pi. These data first reveal the biological function of OsARF16, provide novel evidence of a linkage between auxin and ?Pi responses and facilitate the development of new strategies for the efficient utilization of Pi in rice.  相似文献   

17.
In comparison to wild type Arabidopsis thaliana, the auxin resistant mutants axr1 and axr2 exhibit reduced inhibition of root elongation in response to auxins. Several auxin-regulated physiological processes are also altered in the mutant plants. When wild-type, axr1 and axr2 seedlings were grown in darkness on media containing indoleacetic acid (IAA), promotion of root growth was observed at low concentrations of IAA (10?11 to 10?7M) in 5-day-old axr2 seedlings, but not in axr1 or wild-type seedlings. In axr1 there was little or no measurable root growth response over the same concentration range. In wild type, root growth was inhibited at concentrations greater than 10?10M and no detectable root growth response was observed at lower concentrations. In addition, production of lateral roots in response to IAA increased in axr2 seedlings and decreased in axr1 seedlings relative to wild type. Promotion of root elongation and initiation of lateral roots in axr2 seedlings in response to auxin indicate that axr2 seedlings are able to perceive and respond to IAA.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号