首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
2.
5'' Terminal noncoding sequence heterogeneity in reovirus mRNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
The nucleotide sequences of the mRNAs of reovirus appear to diverge near the 5' termini. Ribonuclease T1 digestion of methylated mRNA synthesized in vitro yielded seven different 5' terminal fragments of the form m7G5'pp5' GmpCpUp(Np)nGp. Chain length analysis showed that the parameter "n" in this structural formula assumes the values 3, 4 and 5.  相似文献   

3.
Methylated and blocked 5' termini in vesicular stomatitis virus in vivo mRNAs.   总被引:15,自引:0,他引:15  
Methyl groups derived from 3H-methyl methionine were incorporated into vesicular stomatitis virus (VSV) MRNAs isolated from infected cells. Sequential degradation of the 12-18S viral mRNA species with ribonuclease T2, penicillium nuclease, and alkaline phosphatase yielded a single 3H-labeled dinucleotide. A similar resistant 32P-labeled fragment was obtained by digesting VSV mRNA uniformly labeled with 32P. This methylated and blocked oligomer was further cleaved with nucleotide pyrophosphatase, yielding two methylated 5' nucleotides. We postulate that the 5' terminal structure of the vivo 12-18S VSV mRNA contains 7-methylguanosine linked by a 5'-5' pyrophosphate bond to a methylated derivative of adenosine. In contrast to the mRNAs (+ strand), the VSV genome RNA ( MINUS STRAND) IS NOT BLOCKED.  相似文献   

4.
Cell-free protein-synthesizing extracts prepared from the brine shrimp, Artemia salina, translate methylated mRNAs. Reovirus unmethylated mRNA is inactive as a template when methylation is prevented by the inhibitor, S-adenosylhomocysteine. A salina mRNAs from both undeveloped and developed embryos contain 5'-terminal 7-methylguanosine in an inverted 5'-5' linkage through three phosphate groups to the rest of the polynucleotide chain. Removal of the 7-methylguanosine by beta elimination converts the mRNA from an active form to one inactive in protein synthesis in extracts of A. salina or wheat germ. Extracts of undeveloped and developed embryos methylate reovirus unmethylated mRNA at the 5' ends to form 5'-terminal structures of the type, m7G(5')ppp(5')G and m7G(5')ppp(5')Gm.  相似文献   

5.
Reovirus mRNAs synthesized in vitro by the virionassociated enzyme have a 5' 'cap 1' structure (m7G(5')ppp(5')GmpCp...). However, about one third to one half of the reovirus mRNAs formed in mouse L929 cells have a 5' 'cap 2' structure (m7G(5')ppp(5')GmpCmp...) and the rest have a 5' 'cap 1' structure. The finding that virus mRNA 'cap' methylation is impaired in extracts of interferon-treated cells prompted us to study the effect of interferon on virus mRNA 'cap' methylation in vivo. Using labeling with [3H]-guanosine and dual labeling with [3H]methionine and [14C]uridine we compared the 5' structures of reovirus mRNAs accumulating between 5 and 11 h after infection in: L929 cells treated with 390 to 2600 U/ml of a partially purified mouse interferon preparation and untreated L929 cells. The treatment resulted in a 70 to 98% decrease in the 24 h virus yield and in a 50 to 55% decrease in the label accumulated in virus mRNAs. The 'capping' of virus mRNAs and the methylation of their 5' terminal and adjacent G residues were not diminished in interferon-treated cells. However, the percent of 'cap 2' termini was 36 to 47% lower in virus mRNAs from interferon-treated cells than in virus mRNAs from control cells. The interferon treatment did not result in the appearance of additional methylated nucleotides in the virus mRNAs.  相似文献   

6.
R P Perry  D E Kelley 《Cell》1975,6(1):13-19
A substantial portion of the hnRNA of mouse L cells contains internal residues of N6-methyl adenylate and blocked 5' terminal sequences which are apparently of the type m7G5' ppp5' YmpZp..., in which 7-methyl guanosine is joined by a 5'-5' pyrophosphate linkage to a 2'-0-methylated residue, Ym. These sequences are indistinguishable from those comprising one of the two classes of blocked 5' sequences found in mRNA, and are quite distinct from those comprising the other class. The remarkable similarity in 5' terminal methylated sequences of hnRNA and a major fraction of mRNA appears to extend even to the relative occurrence of each of the four 2'-0-methylated species in position Ym.  相似文献   

7.
The ability of methylated vaccinia virus mRNA to bind to ribosomes derived from wheat germ of rabbit reticulocyte lysates has been studied after beta elimination, to remove the 5'-terminal m7G, and after "recapping" of beta-eliminated mRNA molecules using guanylyltransferase.guanine-7-methyltransferase complex from vaccinia virions. Removal of m7G from the mRNA results in significant loss of ability to bind to ribosomes and to simulate protein synthesis in vitro. Readdition of m7G, but not of unmethylated guanosine to the 5' end results in recovery of both of these functions. To evaluate the role of 2'-O-methylation of the penultimate ribonucleoside, mRNAs containing m7G-(5')pppA- and m7G(5')pppG- as well as m7G(5')pppAm- and m7G(5')pppGm- ends were synthesized in vitro at limiting S-adenosylmethionine concentrations by vaccinia virus cores. By comparing the cap sequences of ribosome-bound and unbound mRNAs, we concluded that 2'-O-methylation has at most a minor effect compared to that of m7G upon ribosome binding under in vitro conditions. Only at high input mRNA concentrations, at which competition might occur, was there some ribodomal enrichment of mRNAs containing a specific terminal structure, namely m7G(5')pppAm-.  相似文献   

8.
We reported earlier that the methylation of unmethylated reovirus mRNA (reo mRNAU) by the cellular methylating enzymes is impaired in extracts of uninfected, interferon-treated Ehrilich ascites tumor cells (S30INT). We find now that after the methylation of reo mRNAU has stopped in S30INT, the RNA can be reisolated and further methylated in an extract of control cells (S30C). Thus the impairment of methylation in S30INT cannot be due to cleavage or irreversible inactivation of reo mRNAU. Freshly added reo mRNAU can be methylated in S30INT in which the methylation of previously added reo mRNAU has stopped. This indicates that the impairment is due to the depletion of S-adenosylme thionine (the methyl donor), the accumulation of S-adenosylhomocysteine (an inhibitor of methylation), or the irreversible inactivation of reo mRNAU. Freshly added reo mRNAU can be methylated in S30INT in which the methylation of previously added reo mRNAU has stopped. This indicates that the impairment is not due to the depletion of S-adenosylmethionine (the methyl donor), the accumulation of S-adenoxylhomocysteine (an inhibitor of methylation), or the irreversible inactivation of the methylating enzymes. It may be due, however, to the unavailability of reo mRNAU for methylation. The extent of the impairment of reo mRNAU methylation in S30INT decreases with an increasing concentration of reo mRNAU but is not affected by added poly (U), ribosomal RNA, or encephalomyocarditis virus RNA (an mRNA that is probably not capped or methylated at its 5' end). The methylation of reo mRNAU is also impaired in an extract from cells that have not been treated with interferon but with the interferon inducer poly(I) - poly(C). The inhibitor is apparently a macromolecule that is inactivated during incubation. It decreases the methylation at the 7 position of the 5' terminal guanylate residue. In vitro, the rate of reo mRNA synthesis by reovirus cores in the presence of S30INT is the same as in the presence of S30C. However, the methylation of the de novo synthesized reo mRNA by the core-associated methylating enzyme(s) in vitro is inhibited by S30INT but not by S30C. The relevance of these phenomena to the inhibition of reovirus replication in interferon-treated cells remains to be established.  相似文献   

9.
D L Nuss  Y Furuichi    G Koch  A J Shatkin 《Cell》1975,6(1):21-27
Extracts prepared from HeLa cells contain an enzymatic activity which cleaves m7G(5')ppp(5')Gm to m7pG and ppGm. The activity exhibits a high degree of substrate specificity and does not cleave G(5')ppp(5')G or the ring opened derivative of m7GpppGm which has lost the positive charge from the N7 position of m7G. m7GpppGm as the 5' terminal structure of intact reovirus mRNA is resistant to attack by the pyrophosphatase activity, but becomes partially sensitive in the 5' terminal fragment consisting of 7-10 nucleotides derived from the same mRNA by T1 RNAase digestion. m7G(5')ppp(5')GmpCp is completely sensitive to cleavage resulting in the release of m7pG without generation of m7GpppGm as an intermediate. These results establish the existence of a 7-methyl guanosine specific pyrophosphatase activity in HeLa cells.  相似文献   

10.
M Kozak  A J Shatkin 《Cell》1978,13(1):201-212
Four types of experiments were carried out with reovirus messenger RNAs or with 5′ terminal fragments of known sequence to identify features in mRNA which appear to be important for formation of initiation complexes with ribosomes. With a number of reovirus mRNAs, 40S initiation complexes had been previously shown to protect a significantly larger segment of the RNA (including the 5′ terminal m7G) than that protected by 80S initiation complexes. Each 80S-protected sequence had an AUG codon and was a subset of the 40S-protected sequence from the same message. When 40S- and 80S-protected fragments were tested for ability to rebind to ribosomes, the 80S-protected fragments showed considerably lower binding ability, implying that the “extra” sequences protected by 40S initiation complexes contribute to ribosome attachment. Nevertheless, wheat germ ribosomes select the same 5′ terminal initiation site in each reovirus mRNA, irrespective of the presence or absence of m7G on the message. This was demonstrated by comparing fingerprints of the ribosome-protected regions obtained with methylated versus unmethylated RNA. The contribution of m7G to formation of initiation complexes is therefore quantitative rather than qualitative. Limited T1 RNAase digestion of isolated 5′ terminal fragments from several reovirus messages generated a series of smaller fragments which were analyzed for ability to rebind to ribosomes. Partial digestion products up to 30 nucleotides in length which retained the 5′ cap but not the AUG codon were unable to associate stably with ribosomes, whereas every AUG-containing fragment that was analyzed was able to form initiation complexes. The efficiency of binding of certain AUG-containing fragments, however, was reduced by removal of either the 5′ terminal region, including the cap, or of sequences comprising the beginning of the coding region, on the 3′ side of the AUG. Complex formation between messenger RNA and ribosomes was inhibited by the trinucleotide AUG, but not by various other oligonucleotides. Although the inhibition was specific, a vast excess of trinucleotide was required for moderate inhibition of 80S complex formation, and the same concentration of AUG failed to inhibit formation of 40S initiation complexes.  相似文献   

11.
Reovirus progeny subviral particles synthesize uncapped mRNA.   总被引:5,自引:4,他引:1       下载免费PDF全文
H Zarbl  D Skup    S Millward 《Journal of virology》1980,34(2):497-505
Reovirus progeny subviral particles were isolated from L-cells at late times postinfection. It has been shown (D. Skup and S. Millward, J. Virol. 34: 490--496, 1980) that these progeny subviral particles have masked capping enzymes, indicating that mRNA synthesized by these particles should be uncapped. When progeny subviral particles were used for mRNA synthesis in vitro, they failed to incorporate the beta-phosphate of [beta-32P]GTP into the 5' terminal. Direct analysis of reovirus mRNA synthesized by progeny subviral particles in the presence of either [alpha-32P]GTP or [alpha-32P]CTP indicated that the 5' terminal was uncapped, having the structure pGpC... The implications of this finding to the reovirus replicative cycle are discussed.  相似文献   

12.
The methylated constituents of early adenovirus 2 mRNA were studied. RNA was isolated from polyribosomes of cells double labeled with [methyl-3H]methionine and 32PO4 from 2 to 7 g postinfection in the presence of cycloheximide. Cycloheximide ensures that methylation and processing are performed by preexisting host cell enzymes. RNA was fractionated into polyadenylic [poly(A)]+ and poly(A)- molecules using poly(U)-Sepharose, and undergraded virus-specific RNA was isolated by hybridization to viral DNA in 50% formamide at 37 degrees C. Viral mRNA was digested with RNase T2 and chromatographed on DEAE-Sephadex in 7 M urea. Two 3H-labeled RNase T2-resistant oligonucleotide fractions with charges between -5 and -6 were obtained, consistent with two classes of 5' terminal methyl "cap" structures, m7G(5')ppp(5')NmpNp (cap 1) and m7G(5')ppp(5')NmNmpNp (cap 2) (Nm is a ribose 2'-O-methylation). The putative cap 1 contains all the methylated constituents of cap 1 plus Cm. The molar ratios of m7G to 2'-O-methylnucleosides is about 1.0 for cap 1 and 0.5 for cap 2, consistent with the proposed cap structures. Most significant, compositional analysis indicates four different cap 1 structures and at least three different cap 2 structures. Thus there is a minimum of seven early viral mRNA species with different cap structures, unless each type of mRNA can have more than one 5' terminus. In addition to methylated caps, early mRNA contains internal base methylations, exclusively as m6A, as shown by analyses of the mononucleotide (-2 charge) fraction. m6A was present in the ratio of 1 mol of m6Ap per 450 nucleotides. Thus viral mRNA molecules contain two to three internal m6A residues per methyl cap, since there is on the average 1 cap per 1,250 nucleotides.  相似文献   

13.
R P Dottin  A M Weiner  F Lodish 《Cell》1976,8(2):233-244
As in the mRNA from all other eucaryotic cells examined, the 5' nucleotide in messenger RNA from Dictyostelium discoideum is linked by a 5'-5' triphosphate bridge to the unusual nucleoside 7-methyl guanosine. In mammalian cellular mRNA, the 5' terminal sequences have the general formula m7GpppXmpYp(m), where X and Y can be either purine or pyrimidine nucleotides and Y, as well as X, may contain a 2'0-methylated ribose. Although at least 32 5' terminal sequences are possible in cellular mRNA, only four are present in Dictyostelum mRNA. They are (I) m7GppppAp (65%); (II) m7GpppGp (10%); (III) m7GpppAmpAp (10%); (IV m7GpppAp (65%); (II) m7gpppGp (10%); (III) m7GpppAmpAp (10%); (IV) m7GpppAmpUp (10%). Sequences I and II are simpler than those previously reported for mammalian cells because they lack 2'0-methylated nucleosides. Another difference is that in all Dictyostelium mRNAs. the nucleoside X is a purine. The nucleoside 6-methyl adenosine which is found internal to the 5' end of the mRNA of mammalian cells is not detectable in Dictyostelium mRNA. Thus neither 2'0-methylated nucleotides nor 6-methyl adenosine can represent sites for processing of a primary nuclear transript to yield mRNA.  相似文献   

14.
Four alternative structures occur at the 5' ends of vesicular stomatitis virus mRNAs synthesized in infected cells and are separated conveniently by a technique described here. Sixty-five to seventy per cent of the mRNA molecules have the 5' end structure m7G5'ppp5'(m)AmpAp and about 20% have a more highly modified structure m7G5'ppp5'(m)AmpmAmpCp. The base of the first adenosine in each sequence is methylated in about one-half of the ends of each type and kinetic experiments suggest that the latter sequence is derived from the former by further methylations. The remaining 10 to 15% of the 5' ends are pppAp and pppGp in approximately equimolar yields. This heterogeneity with respect to 5' end structure is found within each of the vesicular stomatitis virus mRNA species examined. The mRNA molecules with 5'-triphosphate ends accumulate throughout the infection but are not found on ribosomes, suggesting that they lack a structure(s) required for ribosome recognition. In contrast to mRNA, virion RNA has a single 5' end structure, pppAp.  相似文献   

15.
The methylation of adenovirus-specific nuclear and cytoplasmic RNA.   总被引:15,自引:3,他引:12       下载免费PDF全文
Each poly(A) containing cytoplasmic AD-2 MRNA contains at its 5' terminus the general structure m7 GpppN1 pN2p or m7 GpppN1mpN2mpNp as well as an average of 4 m6A and 0.5-1 m5C residues per molecule. Almost all of the N1m residues are adenine derivatives including Am, m6Am and probably m26,6Am. The N2m is mostly Cm but small amounts of the other three methylated bases are also present. All the methylated constitutents of mRNA are distant from the 3' terminal poly(A). The amount of m6A appears to be greater in larger mRNA than in smaller mRNA. Nuclear Ad-2 specific RNA also contains caps, m6A, and m5C with about twice as much m6A relative to caps as cytoplasmic mRNA. The similarity of Ad-2 nuclear and mRNA to HeLa hnRNA and mRNA suggests that adenovirus mRNA production is a good model for eukaryotic mRNA production.  相似文献   

16.
A purified enzyme system isolated from vaccinia virus cores has been shown to modify the 5' termini of viral mRNA and synthetic poly(A) and poly(G) to form the structures m7G(5')pppA- and m7G(5')pppG-. The enzyme system has both guanylyltransferase and methyltransferase activities. The GTP:mRNA guanylyltransferase activity incorporates GMP into the 5' terminus via a 5'-5' triphosphate bond. The properties of this reaction are: (a) of the four nucleoside triphosphates only GTP is a donor, (b) mRNA with two phosphates at the 5' terminus is an acceptor while RNA with a single 5'-terminal phosphate is not, (c) Mg2+ is required, (d) the pH optimum is 7.8, (e) PP1 is a strong inhibitor, and (f) the reverse reaction, namely the formation of GTP from PP1 and RNA containing the 5'-terminal structure G(5')pppN-, readily occurs. The S-adenosylmethionine:mRNA(guanine-7-)methyltransferase activity catalyzes the methylation of the 5'-terminal guanosine. This reaction exhibits the following characteristics: (a) mRNA with the 5'-terminal sequences G(5')pppA- and G(5')pppG- are acceptors, (b) only position 7 of the terminal guanosine is methylated; internal or conventional 5'-terminal guanosine residues are not methylated, (c) the reaction is not dependent upon GTP or divalent cations, (d) optimal activity is observed in a broad pH range around neutrality, (e) the reaction is inhibited by S-adenosylhomocysteine. Both the guanylyltransferase and methyltransferase reactions exhibit bisubstrate kinetics and proceed via a sequential mechanism. The reactions may be summarized: (see article).  相似文献   

17.
The effect of reovirus double-stranded RNA (dsRNA) and 5'-O-monophosphate form of 2',5'-oligoadenylate (pA(2'p5'A)2) on the translation and degradation of reovirus messenger RNA and on protein phosphorylation was examined in extracts prepared from interferon-treated mouse L fibroblasts. The following results were obtained. 1) The enhanced degradation of reovirus [3H]mRNA observed in the presence of either dsRNA or the 5'-O-triphosphate form of 2',5'-oligoadenylate (pppA(2'p5'A)3) was completely blocked by pA(2'p5'A)2. 2) The dsRNA-dependent phosphorylation of protein P1 and the alpha subunit of eukaryotic initiation factor (eIF-2) depended in a similar manner upon the concentration of dsRNA and was optimal at low dsRNA concentrations (0.1 to 1 microgram/ml). However, high concentrations of dsRNA (greater than 100 micrograms/ml) drastically reduced the phosphorylation of both P1 and eIF-2 alpha. Neither P1 nor eIF-2 alpha phosphorylation was affected by either pA(2'p5'A)2 or pppA(2'p5'A)3. 3) The translation of reovirus mRNA in vitro was inhibited by the addition of either low concentrations of dsRNA or pppA(2'p5'A)3. Whereas pA(2'p5'A)2 completely reversed the pppA(2'p5'A)3-mediated inhibition of translation, the inhibition mediated by low concentrations of dsRNA was only partially reversed by pA(2'p5'A)2. Under conditions where the pppA-(2'p5'A)3mediated degradation of reovirus mRNA was blocked, the translation of reovirus mRNA was still inhibited by low but not by high concentrations of dsRNA in a manner that correlated with the activation of P1 and eIF-2 alpha phosphorylation. These results suggest that the pppA(2'p5'A)n-dependent ribonuclease is not required and that protein phosphorylation may indeed be sufficient for the dsRNA-dependent inhibition of reovirus mRNA translation in cell-free systems derived from interferon-treated mouse fibroblasts.  相似文献   

18.
Host protein synthesis in poliovirus-infected HeLa cells is interrupted, but the host mRNA appears to remain completely intact and unmodified. The average size and poly (A) content of host mRNA was previously known to be unchanged (Koschel, 1974; Leibowitz and Penman, 1971), and this was confirmed. In addition, the 5' terminal methylated "cap" structures remained intact, and no further base modifications at the level of 1 base in 1,000 could be detected. Poliovirus RNA from viruses was previously shown not to have "caps" (Wimmer, 1972), and in this work poliovirus RNA from polyribosomes was found to have pUp at its 5' end. Since, initiation of protein synthesis is probably the basis for the inhibition of cellular protein synthesis in infected cells, the difference in the 5' ends of the host cell and viral RNA could be the basis of selective translation of viral RNA during infection.  相似文献   

19.
An inverse correlation has been established between the levels of DNA methylation at 5'-CCGG-3' (MspI/HpaII) sites in specific genes of integrated viral DNA in adenovirus type 12 (Ad12)-transformed hamster cell lines and the extent to which these genes are expressed ( Sutter and Doerfler , 1979, 1980). In general, early genes are transcribed into mRNA, while late genes are permanently switched off in these cell lines. Adenovirus type 2 genes methylated in vitro at 5'-CCGG-3' sites are not transcribed upon microinjection into nuclei of Xenopus laevis oocytes - unmethylated genes are expressed ( Vardimon et al., 1982a ). The MspI sites in the early and in some of the late Ad12 genes in cell lines HA12 /7, T637 , and A2497 -3 have now been precisely mapped. The data presented here reveal that the promoter/leader and 5'-regions of the early genes are unmethylated both at MspI sites and at 5'-GCGC-3' (HhaI) sites. In some instances, e.g., in the E2a regions in all three lines, the main parts of the early genes are partly methylated, even though the genes are expressed. In cell line HA12 /7, the early region E3 is not expressed, and the promoter/leader and 5'-regions of this segment are fully methylated. All late regions are completely methylated. The results suggest that the state of methylation in the promoter/leader and 5'-regions of integrated adenovirus genes is important in the control of gene expression.  相似文献   

20.
The 5' terminal structure of the mRNA synthesized in vitro by the virion-associated RNA polymerase of vesicular stomatitis virus in the presence of S-adenosyl-L-methione consists of 7-methyl guanosine linked to 2'-O-methyl adenosine through a 5'-5' pyrophosphate bond as m7G(5')ppp(5')A-m-p ... The alpha and beta phosphated of GTP and alpha phosphate of ATP are incorporated into the blocked 5' terminal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号