首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The occurrence of intermediate-sized filaments containing prekeratin-like proteins ('cytokeratins') has been examined in various organs of rat and cow by electron microscopy and by immunofluorescence microscopy on frozen sections using antibodies to defined constitutive proteins of various types of intermediate-sized filaments (prekeratin, vimentin, desmin). Positive cytokeratin reaction and tonofilament-like structures have been observed in the following epithelia: epidermis; ductal, secretory, and myoepithelial cells of sweat glands; mammary gland duct; myoepithelial cells of lactating mammary gland; milk secreting cells of cow; ductal, secretory, and myoepithelial cells of various salivary glands; tongue mucosa; bile duct; excretory duct of pancreas; intestinal mucosa; urothelium; trachea; bronchi; thymus reticulum, including Hassall corpuscles; mesothelium; uterus; and ciliated cells of oviduct. None of the epithelial cells mentioned has shown significant reaction with antibodies to vimentin, the major component of the type of intermediate-sized filaments predominant in mesenchymal cells. The widespread, if not general occurrence of cytokeratin filaments in epithelial cells is emphasized, and it is proposed to use this specific structure as a criterion for true epithelial character or origin.  相似文献   

2.
Intermediate-sized filaments of human endothelial cells.   总被引:15,自引:0,他引:15       下载免费PDF全文
Human endothelial cells prepared from unbilical cords are characterized in parallel by electron microscopy and indirect immunofluorescence microscopy using specific antibodies against different classes of intermediate-sized filaments. The strongly developed, loose bundles of intermediate-sized filaments typically found in these cells are not decorated by antibodies against prekeratin or antibodies against smooth muscle desmin. They are, however, strongly decorated by antibodies directed against murine "vimentin," i.e., the 57,000 mol wt polypeptide which is the major protein of the intermediate-sized filaments predominant in various cells of mesenchymal origin. Cytoskeletal preparations greatly enriched in intermediate-sized filaments show the enrichment of a polypeptide band comigrating with murine vimentin. This shows that the intermediate-sized filaments that are abundant in human endothelial cells are predominantly of the vimentin type and can be demonstrated by their cross-reaction with the vimentin of rodents. These data also strengthen the evidence for several subclasses of intermediate-sized filaments, which can be distinguished by immunological procedures.  相似文献   

3.
The presence of intermediate filament proteins in vascular tissue cells has been examined by immunofluorescence microscopy on frozen sections of the aortic wall of diverse vertebrates (rat, cow, human and chicken) and by gel electrophoresis of cytoskeletal proteins from whole aortic tissue or from stripped tunica media of cow and man. Most cells of the aortic wall in these species contain vimentin filaments, including smoooth muscle cells of the tunica media. In addition, we have observed aortic cells that are positively stained by antibodies to desmin. The presence of desmin in aortic tissue has also been demonstrated by gel electrophoresis for rat, cow and chicken. In aortic tissue some smooth muscle cells contain both types of intermediate filament proteins, vimentin and desmin. Bovine aorta contains, besides cells in which vimentin and desmin seem to co-exist, distinct bundles of smooth muscle cells, located in outer regions of the tunica media, which contain only desmin. The results suggest that (i) intermediate-sized filaments of both kinds, desmin and vimentin, can occur in vascular smooth muscle in situ and (ii) smooth muscle cells of the vascular system are heterogeneous and can be distinguished by their intermediate filament proteins. The finding of different vascular smooth muscle cells is discussed in relation to development and differentiation of the vascular system.  相似文献   

4.
Myoepithelial cells express both epithelial and stromal (smooth muscle) cell characters. Moreover, while separating the luminal (secretory) epithelial cells from the connective tissue in normal breast glands, myoepithelial cells apparently disappear in invasive carcinomas, or their phenotypic characteristics become down-regulated. In the present study we have used a chemically defined culture model system to study how expression of smooth muscle isoforms of actin in myoepithelial cells is influenced by insulin by using immunoblotting, immunofluorescence and electron microscopy. We show that in the absence of insulin, myoepithelial cells do not proliferate but exhibit a differentiated phenotype. Hence, they contain distinct bundles of actin filaments and also numerous caveolae at the cell surface. In contrast, with insulin in the medium, cell proliferation increases dramatically. Concomitantly the smooth muscle actin expression and the associated caveolae disappear within a week. However, other cytoskeletal proteins such as keratins and vimentin are expressed no matter whether insulin is absent or present.  相似文献   

5.
Summary Antibodies against intermediate-sized filaments, of the prekeratin or vimentin type, were used to investigate the presence of these filaments by indirect immunofluorescence microscopy in cultured and non-cultured amniotic fluid cells, in frozen sections of the placenta and in isolated cells of the amniotic epithelium. Two major classes of cells can be cultured from amniotic fluids, namely cells of epithelial origin containing filaments of the prekeratin type and cells of different origin which contain filaments of the vimentin type but are negative when tested with antibodies to epidermal prekeratin. The presence of prekeratin type filaments correlates with the morphology of colonies of amniotic fluid cell cultures in vitro as classified by Hoehn et al. (1974). Cells of E-type colonies are shown to be of epithelial origin. In contrast our data indicate a different origin of almost all cells of F-type colonies and of the large majority of cells of AF-type colonies. Cells of epithelial origin and positively stained with antibodies to epidermal prekeratin are occasionally scattered in F-type colonies and in variable percentages (up to 30%) in AF-type colonies. Surprisingly, cryostat sections of the amniotic epithelium and isolated groups of amniotic cells showed positive reactions with both antibodies to vimentin and prekeratin. The possibility that amniotic cells may be different from other epithelial cells in that they contain both types of filaments simultaneously already in situ is presently under investigation.Part of this work is included in the doctoral thesis of Irmgard Treiss to be submitted to the Faculty of Medicine of the University of Heidelberg  相似文献   

6.
Normal and neoplastic human breast tissue as well as lactating and nonlactating rat mammary glands and 7,12-dimethylbenz(alpha)-anthracene-induced mammary adenocarcinomas of rat, were examined by indirect immunofluorescence microscopy using guinea pig antibodies to human and bovine epidermal prekeratin and to cytokeratin polypeptide D from mouse hepatocytes. In normal mammary glands of both species, lactating rats included, the antibodies raised against human and bovine epidermal prekeratins strongly stained ductal and myoepithelial cells, whereas antibodies to hepatic cytokeratin D revealed, in addition, fibrillar staining in cells of the alveolus-like terminal lobular units and in milk secreting cells of the rat. The presence of some finely dispersed intermediate-sized filaments of the cytokeratin type in lactating alveolar cells of rat mammary gland was also demonstrated by electron microscopy. In human intraductal mammary carcinomas the antibodies to epidermal prekeratins showed staining in myoepithelial cells and intralumenal papillary protrusions of the tumor, whereas the antibodies to hepatic cytokeratin D presented an almost complementary pattern in that they showed strongest staining in the more basally located layers of tumor cells. Intraductal adenocarcinomas of rats showed strong staining with all keratin antibodies examined. In contrast to previous studies using exclusively antisera raised against epidermal prekeratin, out results show that all types of neoplastic and non-neoplastic epithelial cells of mammary gland of both species contain-at least some-filaments of the cytokeratin type identifiable by immunologic reaction, if antibodies are used that recognize a broad range of epidermal and nonepidermal cytokeratins. Consequently, such broad range antibodies to keratin-like proteins provide adequate tools to identify and characterize neoplastic and non-neoplastic epithelial cells and to eliminate false negative immunocytochemical findings in tumor diagnosis. In addition, our observation that in the same human carcinoma two cell types can be distinguished by their reaction with two different antibodies to cytokeratins from epidermis and liver, respectively, indicates that the cells of a given carcinoma can differ in their cytoskeletal composition, thus presenting further criteria for diagnostic differentiation.  相似文献   

7.
The epithelial derived cell lines PtK2 and HeLa were characterized by double immunofluorescence microscopy using purified antibodies against vimentin and prekeratin. The results show that both cell types express simultaneously two immunologically distinct intermediate-sized filaments. Use of colcemid-treated cells confirms that the vimentin fibers and not the keratin-related fibers are rearranged into coils around the nucleus. In some cells staining of fibrous fragments is observed, which are perhaps involved in the synthesis or breakdown of this class of filaments. The concept that growing cells derived from differentiated cell types express not only the intermediate-sized filament system typical of the differentiated cell type but in addition contain intermediate-sized filaments of the vimentin type is discussed.  相似文献   

8.
The intermediate-sized filaments present in epidermal keratinocytes derived from mouse skin and in an established cell line (HEL) derived from spontaneous transformation of murine keratinocytes grown in vitro, have been examined by immunofluorescence microscopy, using antibodies directed against subunit proteins of different classes of intermediate-sized filaments, as well as by electron microscopy and gel electrophoresis of cytoskeletal preparations highly enriched in intermediate-sized filaments. The keratinocytes derived from neonatal skin, which are capable of only limited replication in vitro, show only a single type of intermediate-sized filaments, i.e., the tonofibril-like arrays of filaments containing prekeratin. HEL cells, which proliferate indefinitely in vitro, retain the tonofilament-like structures typical of differentiated epidermal cells but in addition display intermediate-sized filaments of the vimentin type, i.e., the filament system typically found in mesenchymal and mesenchyme-derived cells. We discuss the possibility that (i) the advent of vimentin-type filaments in epidermal cells in culture is related either to the transformed state or the in vitro growth conditions as such and (ii) other differentiated epithelial cells proliferating in vitro may have more than one system of intermediate-sized filaments.  相似文献   

9.
The intermediate-sized filaments present in epidermal keratinocytes derived from mouse skin and in an established cell line (HEL) derived from spontaneous transformation of murine keratinocytes grown in vitro, have been examined by immunofluorescence microscopy, using antibodies directed against subunit proteins of different classes of intermediate-sized filaments, as well as by electron microscopy and gel electrophoresis of cytoskeletal preparations highly enriched in intermediate-sized filaments. The keratinocytes derived from neonatal skin, which are capable of only limited replication in vitro, show only a single type of intermediate-sized filaments, i.e., the tonofibril-like arrays of filaments containing prekeratin. HEL cells, which proliferate indefinitely in vitro, retain the tonofilament-like structures typical of differentiated epidermal cells but in addition display intermediate-sized filaments of the vimentin type, i.e., the filament system typically found in mesenchymal and mesenchyme-derived cells. We discuss the possibility that (i) the advent of vimentin-type filaments in epidermal cells in culture is related either to the transformed state or the in vitro growth conditions as such and (ii) other differentiated epithelial cells proliferating in vitro may have more than one system of intermediate-sized filaments.  相似文献   

10.
By indirect immunofluorescence microscopy, an antiserum raised in rabbit against serum thymic factor (FTS) was found to decorate the epithelial cells not only in the thymus, but also in the kidney, uterus, urinary bladder, prostatic glands, stomach, ileum, colon, submaxillary glands, trachea, epidermis and epidermal appendages of mouse. The staining ability was completely absorbed with an FTS-binding immunoabsorbent, and affinity-purified anti-FTS IgG showed the same staining patterns as the original antiserum. The staining profiles resembled those described for tissues stained with antiprekeratin and antikeratin antibodies in both distribution in tissue and localization in the epithelial cells. In primary-cultured cells from mouse kidney medullae, the anti-FTS antibodies decorated the cytoplasmic fiber network. The fibers were wavy, bundled together and branched. They were dense in the perinuclear cytoplasm and spread in the cytoplasm toward the cell periphery. This decoration was resistant to colchicine and cytochalasin B, but sensitive to pretreatment with formaldehyde. The organization and shape of the fiber network were similar to those of the networks of intermediate-sized filaments containing cytokeratins, keratins and vimentin. However, the antiserum did not give a precipitin band in immunodiffusion test with prekeratin from bovine muzzle, keratin from human epidermis or 3T3 vimentin. Neither tubulin nor actin formed precipitin bands with the antiserum. These results show that the epithelial cells of various mouse tissues contain FTS or substances close to FTS in chemical structure and suggest that they are associated with the intermediate-sized filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号