首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Immunofluorescence and immunoperoxidase labeling for fibronectin was used to study the early events of cephalic neural crest cell migration in avian embryos. Prior to crest cell appearance, fibronectin was associated with the basement membranes of all tissues. The loose mesenchymal cells were also surrounded by this glycoprotein. The crest cell individualization phase included a transient rounding up and a rapid increase in cell number in a very limited space. Whereas the neural tube basement membrane was not formed dorsally at the site of emergence of crest cells, it was partially fused laterally with the ectoderm basement membrane apparently preventing immediate crest cell emigration. Further increase in cell number occurred concomitantly with their penetration between the two developing basement membranes of the neural tube and the ectoderm. The localization of migrating crest cells is apparently greatly influenced by local interactions between the ectoderm and the neural tube, whose morphogenesis differs considerably at each axial level: at the mesencephalic-rhombencephalic levels, crest cells rapidly reached a cell-free space that was mostly devoid of fibronectin. Further migration occurred laterally in that space while pioneer crest cells became surrounded by fibronectin in their environment. Crest cells progressed as a confluent multicellular layer with an apparent velocity of 70 μm/hr. At the prosencephalic and median rhombencephalic levels, crest cells accumulated between the fibronectin-rich basement membranes of the ectoderm and the neural tube. Pioneer crest cells were arrested at the site of attachment of the ectoderm and the neural tube basement membranes (i.e., optic vesicles and otic placodes). Crest cells resumed their migration when more space became available during the constriction of the optic vesicles and the invagination of the otic placodes.  相似文献   

2.
The cell substratum attachment (CSAT) antibody recognizes a 140-kD cell surface receptor complex involved in adhesion to fibronectin (FN) and laminin (LM) (Horwitz, A., K. Duggan, R. Greggs, C. Decker, and C. Buck, 1985, J. Cell Biol., 101:2134-2144). Here, we describe the distribution of the CSAT antigen along with FN and LM in the early avian embryo. At the light microscopic level, the staining patterns for the CSAT receptor and the extracellular matrix molecules to which it binds were largely codistributed. The CSAT antigen was observed on numerous tissues during gastrulation, neurulation, and neural crest migration: for example, the surface of neural crest cells and the basal surface of epithelial tissues such as the ectoderm, neural tube, notochord, and dermomyotome. FN and LM immunoreactivity was observed in the basement membranes surrounding many of these epithelial tissues, as well as around the otic and optic vesicles. In addition, the pathways followed by cranial neural crest cells were lined with FN and LM. In the trunk region, FN and LM were observed surrounding a subpopulation of neural crest cells. However, neither molecule exhibited the selective distribution pattern necessary for a guiding role in trunk neural crest migration. The levels of CSAT, FN, and LM are dynamic in the embryo, perhaps reflecting that the balance of surface-substratum adhesions contributes to initiation, migration, and localization of some neural crest cell populations.  相似文献   

3.
Crest cells individualized at the dorsal border of the neural tube, while they became surrounded by a fibronectin-rich matrix. Crest cells initiated their migration between the basement membranes of the neural tube and the ectoderm. In the vagal region, crest cells migrated in a fibronectin-rich environment between the ectoderm and the dermomyotome, very rapidly reaching the apex of the pharynx. In the trunk region, crest cells opposite the bulk of the somite accumulated at the junction between the somite, the neural tube, and the ectoderm; they resumed their migration at the onset of the dissociation of the somite into dermomyotome and sclerotome. Migration occurred more ventrally along the neural tube; nevertheless, the formation of the rapidly expanding sclerotome prevented crest cells from reaching the paranotochordal region. Thereafter, crest cells accumulated between the neural tube, the dermomyotome, and the sclerotome, where ultimately they formed the dorsal root ganglia. In contrast, cells opposite the intersomitic space did not encounter these obstacles and utilized a narrow pathway formed between the basement membranes of the two adjacent somites. This pathway allowed crest cells to reach the most ventral regions of the embryo very rapidly; they accumulated along the aorta to form the aortic plexuses, the adrenal medulla, and the sympathetic ganglia. The basic features of the migration pathways are (1) a strict delimitation by the fibronectin-rich basement membranes of the surrounding tissues, (2) a formation of space concomitant with the migration of crest cells, (3) a transient existence: continued migration is correlated with the presence of fibronectin, whereas cessation is correlated with its focal disappearance. The crest cells are characterized by their inability to traverse basement membranes and penetrate within tissues. We propose that the combination of active proliferation, unique motility properties, and the presence of narrow pathways are the major mechanisms ensuring correct directionality. Morphologically defined transient routes of migration along with developmentally regulated changes in the extracellular matrix and in the adhesive properties of crest cells are most probably involved in their stabilization in defined territories and their aggregation into ganglia.  相似文献   

4.
目的 初步探讨PTEN基因在早期神经嵴细胞迁移中的作用.方法 首先胚胎整体的原位杂交和免疫荧光方法检测鸡胚胎内源性的PTEN基因及蛋白水平的表达情况;其次,利用鸡胚胎体内半侧神经管转染的方法,使神经管一侧PTEN基因过表达,对侧神经管为正常对照侧;最后,通过Pax7的整体胚胎免疫荧光表达观察PTEN基因对其标记的部分神经嵴细胞迁移的影响.结果 内源性PTEN基因在mRNA和蛋白水平表达显示,其在早期胚胎HH4期的神经板即开始明显的表达;通过半侧过表达PTEN基因后观察到过表达PTEN基因侧的头部神经嵴细胞迁移与对照侧相比明显受到抑制,但对躯干部的影响并不明显.结论 PTEN基因可能抑制早期胚胎头部神经嵴细胞的迁移.  相似文献   

5.
The cranial paraxial mesoblast is patterned into segmental units termed somitomeres. Recently we demonstrated the morphological relationship between the migratory pathways of cranial neural crest cells and the patterned primary mesenchyme of chick embryos (Anderson and Meier, '81). Since extracellular matrix, particularly hyaluronate, is also distributed in cranial crest pathways, embryos were given sub-blastodisc injections of hyaluronidase just prior to neural tube fusion and neural crest migration to remove matrix. Histological sections of enzyme-treated embryos showed that Alcian blue staining of hyaluronate was significantly reduced. Surface ectoderm appeared collapsed on the subjacent mesoderm as well. Examination of embryos with the scanning electron microscope (SEM) revealed that paraxial mesoderm remained segmentally patterned even though it appeared more condensed because of a reduction in intercellular space between mesenchymal cells. In enzyme-treated embryos, the rostral crest cells spread over the dorsal surfaces of the first four somitomeres, as they would do normally. This distribution of neural crest cells occurs even when enzyme treatment interferes with neural tube fusion at that level. We conclude that 1) neural tube fusion is not a prerequisite for the timely release of cranial crest in the chick embryo and 2) that much of the organized hyaluronate-rich matrix that lies in the path of cranial crest is not essential for crest emigration or patterned distribution.  相似文献   

6.
Vital dye analysis of cranial neural crest cell migration in the mouse embryo.   总被引:15,自引:0,他引:15  
The spatial and temporal aspects of cranial neural crest cell migration in the mouse are poorly understood because of technical limitations. No reliable cell markers are available and vital staining of embryos in culture has had limited success because they develop normally for only 24 hours. Here, we circumvent these problems by combining vital dye labelling with exo utero embryological techniques. To define better the nature of cranial neural crest cell migration in the mouse embryo, premigratory cranial neural crest cells were labelled by injecting DiI into the amniotic cavity on embryonic day 8. Embryos, allowed to develop an additional 1 to 5 days exo utero in the mother before analysis, showed distinct and characteristic patterns of cranial neural crest cell migration at the different axial levels. Neural crest cells arising at the level of the forebrain migrated ventrally in a contiguous stream through the mesenchyme between the eye and the diencephalon. In the region of the midbrain, the cells migrated ventrolaterally as dispersed cells through the mesenchyme bordered by the lateral surface of the mesencephalon and the ectoderm. At the level of the hindbrain, neural crest cells migrated ventrolaterally in three subectodermal streams that were segmentally distributed. Each stream extended from the dorsal portion of the neural tube into the distal portion of the adjacent branchial arch. The order in which cranial neural crest cells populate their derivatives was determined by labelling embryos at different stages of development. Cranial neural crest cells populated their derivatives in a ventral-to-dorsal order, similar to the pattern observed at trunk levels. In order to confirm and extend the findings obtained with exo utero embryos, DiI (1,1-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine perchlorate) was applied focally to the neural folds of embryos, which were then cultured for 24 hours. Because the culture technique permitted increased control of the timing and location of the DiI injection, it was possible to determine the duration of cranial neural crest cell emigration from the neural tube. Cranial neural crest cell emigration from the neural folds was completed by the 11-somite stage in the region of the rostral hindbrain, the 14-somite stage in the regions of the midbrain and caudal hindbrain and not until the 16-somite stage in the region of the forebrain. At each level, the time between the earliest and latest neural crest cells to emigrate from the neural tube appeared to be 9 hours.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The trunk neural crest originates by transformation of dorsal neuroepithelial cells into mesenchymal cells that migrate into embryonic interstices. Fibronectin (FN) is thought to be essential for the process, although other extracellular matrix (ECM) molecules are potentially important. We have examined the ability of three dimensional (3D) ECM to promote crest formation in vitro. Neural tubes from stage 12 chick embryos were suspended within gelling solutions of either basement membrane (BM) components or rat tail collagen, and the extent of crest outgrowth was measured after 22 hr. Fetal calf serum inhibits outgrowth in both gels and was not used unless specified. Neither BM gel nor collagen gel contains fibronectin. Extensive crest migration occurs into the BM gel, whereas outgrowth is less in rat tail collagen. Addition of fibronectin or embryo extract (EE), which is rich in fibronectin, does not increase the extent of neural crest outgrowth in BM, which is already maximal, but does stimulate migration into collagen gel. Removal of FN from EE with gelatin-Sepharose does not remove the ability of EE to stimulate migration. Endogenous FN is localized by immunofluorescence to the basal surface of cultured neural tubes, but is not seen in the proximity of migrating neural crest cells. Addition of the FN cell-binding hexapeptide GRGDSP does not affect migration into either the BM gel or the collagen gel with EE, although it does block spreading on FN-coated plastic. Thus, although crest cells appear to use exogenous fibronectin to migrate on planar substrata in vitro, they can interact with 3D collagenous matrices in the absence of exogenous or endogenous fibronectin. In BM gels, the laminin cell-binding peptide, YIGSR, completely inhibits migration of crest away from the neural tube, suggesting that laminin is the migratory substratum. Indeed, laminin as well as collagen and fibronectin is present in the embryonic ECM. Thus, it is possible that ECM molecules in addition to or instead of fibronectin may serve as migratory substrata for neural crest in vivo.  相似文献   

8.
The timing of appearance and pathway of migration of precursors of melanocytes in cranial regions of chick embryos were examined by the monoclonal antibody MEBL-1, which can identify precursors of melanocytes soon after their emigration from the neural tube (7). Precursors of melanocytes were first detected on the dorsal side of the mesencephalic neural tube at stage 16, when other neural crest cells had already left the dorsal side of the neural tube. Then precursors of melanocytes at more rostral and caudal levels appeared. After the first appearance on the neural tube, precursors of melanocytes migrated along a dorsolateral pathway under the superficial ectoderm, which followed other neural crest cells. These results indicate that precursors of melanocytes migrate along spatially the same pathway as other neural crest cells, but temporally the different time as considered previously.  相似文献   

9.
Neural crest cells, the migratory precursors of numerous cell types including the vertebrate peripheral nervous system, arise in the dorsal neural tube and follow prescribed routes into the embryonic periphery. While the timing and location of neural crest migratory pathways has been well documented in the trunk, a comprehensive collection of signals that guides neural crest migration along these paths has only recently been established. In this review, we outline the molecular cascade of events during trunk neural crest development. After describing the sequential routes taken by trunk neural crest cells, we consider the guidance cues that pattern these neural crest trajectories. We pay particular attention to segmental neural crest development and the steps and signals that generate a metameric peripheral nervous system, attempting to reconcile conflicting observations in chick and mouse. Finally, we compare cranial and trunk neural crest development in order to highlight common themes.  相似文献   

10.
Cranial and trunk neural crest cells produce different derivatives in vitro. Cranial neural crest cultures produce large numbers of cells expressing fibronectin (FN) and procollagen I (PCol I) immunoreactivities, two markers expressed by mesenchymal derivatives in vivo. Trunk neural crest cultures produce relatively few FN or PCol I immunoreactive cells, but they produce greater numbers of melanocytes than do cranial cultures. Treatment of trunk neural crest cultures with transforming growth factor-β1 (TGF-β1) stimulates them to express both FN and PCol I immunoreactivities at levels comparable to those normally seen in cranial cultures and simultaneously decreases their expression of melanin. These observations raised the possibility that endogenous TGF-β is involved in specifying differences in the phenotypes expressed by cranial and trunk neural crest cells in vitro. Consistent with this idea, we found that treatment of cranial cultures with a function-blocking TGF-β antiserum inhibits the development of FN immunoreactive cells and stimulates the development of melanocytes. Cranial and trunk neural crest cells express approximately equal levels of TGF-β mRNA. However, trunk neural crest cells are significantly less sensitive to the FN-inducing effect of TGF-β1 than are cranial neural crest cells. These results suggest that: (1) endogenous TGF-β is required for the expression of mesenchymal phenotypes by cranial neural crest cells, and (2) differences in the phenotypes expressed by cranial and trunk neural crest cells in vitro result in part from differences in the sensitivities of these two cell populations to TGF-β. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号