首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Aerial basking may have several benefits for freshwater turtles in addition to thermoregulation such as removing parasites from the skin, which would improve health state. However, basking outside of water may be risky because it may expose freshwater turtles to terrestrial predators. Here, we monitored the basking activity of male Spanish terrapins (Mauremys leprosa) in a wild population of the south‐western of the Iberian Peninsula. We also measured body size, health state parameters, parasite prevalence, and limb coloration of these individuals. We aimed to examine whether basking may improve health state of turtles. The results showed that male turtles with higher basking activity were those parasitized by Hepatozoon and that had lower total white blood cell (WBC). This might indicate that turtles in worse health condition increase their time spent basking to improve their immune system. In addition, because basking might be risky, we also expected that turtles with more conspicuous coloration should reduce their basking activity to avoid being detected by potential predators. We found that infected turtles, but not uninfected ones, that spent more time basking also had less bright coloration in limb stripes. Our study provides evidence that basking activity may improve health state of terrapins, but that color conspicuity may increase costs of basking, especially for parasitized individuals. Understanding the balance between the benefits and the costs of basking might be essential for the conservation of freshwater turtle populations.  相似文献   

5.
6.
Abstract Larvae of many anuran taxa display strong behavioural responses to chemical cues, including alarm signals from injured conspecific tadpoles. We exposed tadpoles and metamorphs from an Australian population of the invasive cane toad (Chaunus[Bufo] marinus) to a range of chemical stimuli and quantified their responses both in the laboratory and in the field. Filtered fluids containing scent cues from crushed conspecifics elicited strong avoidance from tadpoles, whereas other cues (e.g. scent of food, of native‐range fish or urodele predators, and thermal stimuli) did not. Apparent aggregation of tadpoles in response to scent cues proved to be an artifact of tank design, and was an indirect consequence of avoidance of those cues. Field trials confirmed that free‐ranging toad tadpoles and metamorphs avoided chemical cues from crushed conspecifics, suggesting that the chemicals inducing this response might provide an opportunity to develop targeted control methods for this invasive species.  相似文献   

7.
The ability to change the reproduction mode and produce diapausing eggs, which is prevalent in many zooplankton species, significantly impacts on the evolution and ecology of aquatic communities. The production of diapausing eggs is controlled by multiple effects of biotic and abiotic factors, including infochemicals. We have investigated the effects of chemicals exuded by conspecifics and ecologically close competing congers, Moina brachiata and M. macrocopa, which coexist in the same water body, and by larger Cladocera species (Daphnia magna) on the change of reproduction mode, specific growth rate and fecundity of M. brachiata and M. macrocopa females. The production of gametogenetic eggs in both species was detected only in waters from crowded cultures of conspecifics. The water from crowded cultures of conspecifics reduced the specific growth rate of the juvenile females of both species that later switched to gametogenesis. While it either did not affect (in M. macrocopa) or even increase (in M. brachiata) the specific growth rate of the juvenile females that later reproduced by parthenogenesis. Females of M. macrocopa released significantly fewer neonates in the water from crowded cultures of conspecifics than in all other treatments, while the fecundity of M. brachiata females was the same in all treatments. To understand the phenomenon of diapause induction under the effect of chemical cues in zooplankton, a link between laboratory tests and ecological research should be established, and the chemical composition of the signals should be determined.  相似文献   

8.
9.
Animals use sensory stimuli to assess and select habitats, mates and food as well as to communicate with other individuals. One way they do this is to use olfaction, whereby they identify and respond to chemical cues. All organisms release odours, which mix with other chemical substances and ambient environmental conditions. The result is that animals are frequently immersed in a complex, highly dynamic sensory environment where they must identify and respond to only some of the potential stimuli they encounter in the face of significant levels of background noise. Understanding how organisms respond to different chemical cues is therefore dependent on knowing how these responses might be influenced by potential interactions with other stimuli. To test this, we examined whether the diadromous fish Galaxias maculatus was attracted to conspecific odours and whether this response differed when cues were offered in an artificial environment lacking other potential chemical stimuli (tap water) or a more natural background environment (stream water). We found that (1) fish responded to both natural stream water odours and those from conspecifics but the response to the latter was stronger; (2) the attraction to conspecific odours was stronger in tap water than in stream water, which indicates the importance of these odours may be overestimated when they are offered in artificial media. We also conducted a brief literature review, which confirmed that artificial media are commonly used in experiments and that the background environment is often not considered. Our results show that future research testing the responses of organisms to auditory, olfactory and visual cues should carefully consider the context in which cues are presented. Without doing so, such studies may inaccurately assess the importance of sensory cues in natural situations in the wild. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Mauremys leprosa, distributed in Iberia and North‐west Africa, contains two major clades of mtDNA haplotypes. Clade A occurs in Portugal, Spain and Morocco north of the Atlas Mountains. Clade B occurs south of the Atlas Mountains in Morocco and north of the Atlas Mountains in eastern Algeria and Tunisia. However, we recorded a single individual containing a clade B haplotype in Morocco from north of the Atlas Mountains. This could indicate gene flow between both clades. The phylogenetically most distinct clade A haplotypes are confined to Morocco, suggesting both clades originated in North Africa. Extensive diversity within clade A in south‐western Iberia argues for a glacial refuge located there. Other regions of the Iberian Peninsula, displaying distinctly lower haplotype diversities, were recolonized from within south‐western Iberia. Most populations in Portugal, Spain and northern Morocco contain the most common clade A haplotype, indicating dispersal from the south‐western Iberian refuge, gene flow across the Strait of Gibraltar, and reinvasion of Morocco by terrapins originating in south‐western Iberia. This hypothesis is consistent with demographic analyses, suggesting rapid clade A population increase while clade B is represented by stationary, fragmented populations. We recommend the eight, morphologically weakly diagnosable, subspecies of M. leprosa be reduced to two, reflecting major mtDNA clades: Mauremys l. leprosa (Iberian Peninsula and northern Morocco) and M. l. saharica (southern Morocco, eastern Algeria and Tunisia). Peripheral populations could play an important role in evolution of M. leprosa because we found endemic haplotypes in populations along the northern and southern range borders. Previous investigations in another western Palearctic freshwater turtle (Emys orbicularis) discovered similar differentiation of peripheral populations, and phylogeographies of Emys orbicularis and Mauremys rivulata underline the barrier status of mountain chains, in contrast to sea straits, suggesting common patterns for western Palearctic freshwater turtles.  相似文献   

11.
A diversity of fishes release chemical cues upon being attacked by a predator. These cues, commonly termed alarm cues, act as sources of public information warning conspecifics of predation risk. Species which are members of the same prey guild (i.e. syntopic and share predators) often respond to one another's alarm cues. The purpose of this study was to discriminate avoidance responses of fishes to conspecific alarm cues and cues of other prey guild members from responses to unknown damaged fish odours and novel odours. We used underwater video to measure avoidance responses of freshwater littoral species, namely fathead minnows (Pimephales promelas), finescale dace (Chrosomus neogaeus), and brook stickleback (Culaea inconstans), to both injured fish cues and novel non‐fish odours. The cyprinids (minnows and dace) showed significant avoidance of minnow cues over swordtail cues, morpholine, and the control of distilled water and tended to avoid fathead cues over cues of known prey guild members (stickleback). Cyprinids also significantly avoided cues of stickleback over unknown heterospecific cues (swordtail) and tended to avoid stickleback cues over morpholine and the distilled water control. Stickleback significantly avoided fathead minnow extract over the distilled water and tended to avoid stickleback and swordtail over distilled water. We conclude that fishes in their natural environment can show dramatic changes in behaviour upon exposure to alarm cues from conspecifics and prey guild members. These responses do not represent avoidance of cues of any injured fish or any novel odour.  相似文献   

12.
The behavior of marine larvae during and after settlement can help shape the distribution and abundance of benthic juveniles and therefore the intensity of ecological interactions on reefs. Several laboratory choice-chamber experiments were conducted to explore sensory capabilities and behavioral responses to ecological stimuli to better understand habitat selection by “pre-metamorphic” (larval) and “post-metamorphic” (juvenile) stages of a coral reef fish (Thalassoma hardwicke). T. hardwicke larvae were attracted to benthic macroalgae (Turbinaria ornata and Sargassum mangarevasae), while slightly older post-metamorphosed juveniles chose to occupy live coral colonies (Pocillopora damicornis). Habitat choices of larvae were primarily based upon visual cues and were not influenced by the presence of older conspecifics. In contrast, juveniles selected live coral colonies and preferred those occupied by older conspecifics; choices made by juveniles were based upon both visual and olfactory cues from conspecifics. Overall, the laboratory experiments suggest that early life-history stages of T. hardwicke use a range of sensory modalities that vary through ontogeny, to effectively detect and possibly discriminate among different microhabitats for settlement and later occupation. Habitat selection, based upon cues provided by environmental features and/or by conspecifics, might have important consequences for subsequent competitive interactions.  相似文献   

13.
Female spiders deposit chemical cues that elicit male courtship behavior with silk. These cues are often assumed to be species-specific although male spiders may court in response to chemical cues of closely-related species. We used behavioral assays to test the extent of species discrimination of female chemical cues by male Schizocosa ocreata, a wolf spider (Lycosidae). Discrimination, expressed as relative courtship intensity of males, varied significantly with phylogenetic distance. Males did not discriminate between female cues of conspecifics and a sibling species, S. rovneri. Courtship response was intermediate for another species within the ocreata clade and not different from control for spiders outside the clade. These findings support the sibling species status of S. ocreata and S. rovneri, and also suggest the composition of female chemical signals is conserved across closely related wolf spider species.  相似文献   

14.
Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via ‘cross-facilitation’ of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as ‘nurse’species in restoration efforts.  相似文献   

15.
Heavy metal concentrations in three freshwater snails, an aquatic plant, sediment, and water from Azraq Oasis pools in the Jordanian desert were measured by atomic absorption spectrophotometry. There were significant differences in metal accumulation among snail species. These snails are ranked according to their metal accumulation capacity in the order: Melanoides tuberculata > Melanopsis praemorsa > Theodoxus jordani. Although there were no significant differences among the size classes of these snails in metal concentrations, larger snails contained generally higher levels of metals than the smaller ones. The concentration factors for the selected snails exceeded 103, while it ranged from 0.1–10.2 × 103 for Typha angustata plants. Among sampling sites, metal concentrations in M. praemorsa, T. angustata, sediment, and water were not significantly different, except for Fe in M. praemorsa which was highest at station 3, and Cd and Cr which were highest in water and sediment of station 4. The seasonal variation in metal content was found to be species and metal-dependent.  相似文献   

16.
Melanin‐based coloration reflects mostly social status and dominance in males of several species. However, the relation of melanism with other suites of behavioral traits has received less attention. Here, we examined whether the melanic coloration of the shell of male Spanish terrapins Mauremys leprosa was related to several behavioral patterns. To test this, we simulated predatory attacks of different risk levels and measured the time that the turtles spent hiding entirely in their own shells (i.e. appearance times). We also measured the activity level of the turtles in a novel‐environment test. The results showed that melanin‐based coloration was related to antipredatory behavior. Male terrapins with a greater extent of black coloration in their shells demonstrated shorter appearance times after a predator attack. However, this pattern was significant only when turtles were subjected to a high risk. In addition, darker turtles had longer latency times in a novel environment. The results of the present study support the hypothesis that melanin‐based coloration may be associated with some behavioral functions. Our study provides a good framework for future studies concerning the effect of melanin‐coloration on multiple behavioral traits that could be applied to further research using other animal models.  相似文献   

17.
Many aquatic species produce chemical alarm cues that serve as a warning to nearby conspecifics. In mixed‐species aggregations, individuals may also benefit by ‘eavesdropping’ on the chemical alarm cues of other species that are in the same prey guild. Rainbow Darters (Etheostoma caeruleum) are benthic fish that co‐occur with native Ozark Minnows (Notropis nubilus), recently introduced Western Mosquitofish (Gambusia affinis), and native Oklahoma Salamanders (Eurycea tyrnerensis), all of whom are vulnerable to the same predators. We tested the responses of darters to the damage‐released alarm cues of conspecifics (positive control), minnows, and mosquitofish; alarm cues from Bumblebee Gobies (Brachygobius doriae) served as a negative (allopatric) control. We also tested the response of sympatric and allopatric darters to the damage‐released alarm cues of Oklahoma Salamander. Darters exhibited a fright response to conspecific and minnow alarm cues, but not to cues from mosquitofish or gobies. Lack of response to mosquitofish cues could be because they are introduced or because they typically occur higher in the water column than darters. Darters that were sympatric with the salamander exhibited a fright response to the alarm cues of the salamander, while allopatric darters did not. Rainbow Darters can develop responses to the alarm cues of syntopic species (minnows and Oklahoma Salamander) within their prey guild.  相似文献   

18.
We raised leatherback posthatchlings in the laboratory for up to 7 weeks to study the role of visual and chemical cues in food recognition and food-seeking behavior. Turtles were reared on a formulated (artificial gelatinous) diet and had no contact with test materials until experiments began. Subjects were presented with visual cues (a plastic jellyfish; white plastic shapes [circle, square, diamond] similar in surface area to the plastic model), chemical cues (homogenates of lion's mane jellyfish, Cyanea capillata; moon jellyfish, Aurelia aurita; and a ctenophore, Ocyropsis sp., introduced through a water filter outflow), and visual and chemical cues presented simultaneously. Visual stimuli evoked an increase in swimming activity, biting, diving, and orientation toward the object. Chemical cues elicited an increase in biting, and orientation into water currents (rheotaxis). When chemical and visual stimuli were combined, turtles ignored currents and oriented toward the visual stimuli. We conclude that both cues are used to search for, and locate, food but that visual cues may be of primary importance. We hypothesize that under natural conditions turtles locate food visually, then, as a consequence of feeding, associate chemical with visual cues. Chemical cues then may function alone as a feeding attractant.  相似文献   

19.
The mechanisms by which invasive species affect native communities are not well resolved. For example, invasive plants may influence other species through competition, altered ecosystem processes, or other pathways. We investigated one potential mechanism by which invasive plants may harm native species, allelopathy. Specifically, we explored whether native tree species respond differently to potential allelopathic effects of two invasive plant species. We assessed the separate effects of Lolium arundinaceam (tall fescue) and Elaeagnus umbellata (autumn olive) on three common successional tree species: Acer saccharinum (silver maple), Populus deltoides (eastern cottonwood), and Platanus occidentalis (sycamore). Tall fescue and autumn olive are widely planted and highly invasive or persistent throughout North America where they often grow in forest edges, old fields, and other sites colonized by pioneering tree species. In an exploratory greenhouse experiment, we applied aqueous extracts derived from soil, leaf litter, or live leaves to native trees. We compared these treatments to a sterile water control and also to minced leaves leached in water, a common, but potentially less realistic method of testing for allelopathy. For all tree species, minced leaves from tall fescue reduced the probability that seedlings emerged, and minced leaves of autumn olive reduced the number of days to emergence. During other demographic stages, the three native tree species diverged in their responses to the invasive plants. Platanus occidentalis exhibited the widest range of responses, with reduced root biomass due to minced tissue from both invasive species, reduced days to emergence and marginally reduced survival from minced tall fescue, and reduced leaf biomass from tall fescue leaf litter. Populus deltoides appeared insensitive to most extracts, although survival was marginally increased with application of minced or fresh leaf extracts from autumn olive. In addition, minced tall fescue shortened the time to seedling emergence for Acer saccharinum, potentially a positive effect. Overall, results suggest that allelopathy may be one mechanism underlying the negative impacts of tall fescue and autumn olive on other plant species, but that effects can depend strongly upon the source of allelochemicals and the tree species examined.  相似文献   

20.
Many crayfish species have been introduced to novel habitats worldwide, often threatening extinction of native species. Here we investigate competitive interactions and parasite infections in the native Austropotamobius pallipes and the invasive Pacifastacus leniusculus from single and mixed species populations in the UK. We found A. pallipes individuals to be significantly smaller in mixed compared to single species populations; conversely P. leniusculus individuals were larger in mixed than in single species populations. Our data provide no support for reproductive interference as a mechanism of competitive displacement and instead suggest competitive exclusion of A. pallipes from refuges by P. leniusculus leading to differential predation. We screened 52 P. leniusculus and 12 A. pallipes for microsporidian infection using PCR. We present the first molecular confirmation of Thelohania contejeani in the native A. pallipes; in addition, we provide the first evidence for T. contejeani in the invasive P. leniusculus. Three novel parasite sequences were also isolated from P. leniusculus with an overall prevalence of microsporidian infection of 38% within this species; we discuss the identity of and the similarity between these three novel sequences. We also screened a subset of fifteen P. leniusculus and three A. pallipes for Aphanomyces astaci, the causative agent of crayfish plague and for the protistan crayfish parasite Psorospermium haeckeli. We found no evidence for infection by either agent in any of the crayfish screened. The high prevalence of microsporidian parasites and occurrence of shared T. contejeani infection lead us to propose that future studies should consider the impact of these parasites on native and invasive host fitness and their potential effects upon the dynamics of native-invader systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号