首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Summary The incidence and severity of Rhynchosporium secalis infections were assessed in a large population of Hordeum leporinum. Transects were set out in four directions from five trees to determine the effect of shading. Under the tree canopy 60.3% of H. leporinum plants were infected while only 11.2% were infected away from the canopy. Disease severity, on those plants which were infected, was higher under the canopy (mean 12.4% and 13.0% leaf area diseased for the flag and first leaves, respectively) than away from the canopy (means of 7.8% and 5.0% for the flag and first leaves respectively). Plants under the tree canopy contained on average 23% more nitrogen, raising the possibility that the susceptibility of the host changed in response to nitrogen levels. However, the observed pattern is also consistent with the hypothesis that shade-associated changes in the environment enhanced the ability of the pathogen to infect and develop on the host. The data clearly demonstrate the importance of small-scale environmental factors on natural host-pathogen interactions. These environmental factors may cause differential selection for disease resistance within a host population, which may ultimately lead to the formation of sub-populations with differing levels of resistance.  相似文献   

2.
Summary A model of daily canopy photosynthesis was constructed taking light and leaf nitrogen distribution in the canopy into consideration. It was applied to a canopy of Solidago altissima. Both irradiance and nitrogen concentration per unit leaf area decreased exponentially with increasing cumulative leaf area from the top of the canopy. The photosynthetic capacity of a single leaf was evaluated in relation to irradiance and nitrogen concentration. By integration, daily canopy photosynthesis was calculated for various canopy architectures and nitrogen allocation patterns. The optimal pattern of nitrogen distribution that maximizes the canopy photosynthesis was determined. Actual distribution of leaf nitrogen in the canopy was more uniform than the optimal one, but it realized over 20% more photosynthesis than that under uniform distribution and 4.7% less photosynthesis than that under the optimal distribution. Redeployment of leaf nitrogen to the top of the canopy with ageing should be more effective in increasing total canopy photosynthesis in a stand with a dense canopy than in a stand with an open canopy.  相似文献   

3.
Laboratory and screenhouse studies were carried out to assess the relationship between pod age and pod position of cowpea and damage by different pod bug species. The coreids Clavigralla tomentosicollis St?l and Riptortus dentipes Fabricius caused significant damage to young pods of cultivated genotypes, in contrast to the coreid Anoplocnemis curvipes Fabricius and the pentatomid Aspavia armigera Fabricius which exhibited minor feeding activity. Percent seed damage declined with pod age, the critical stage for pod bug infestation being when pods were about eight days old. Clavigralla tomentosicollis and R. dentipes caused significantly higher damage to pods located within the leaf canopy, thus behaving differently from Anoplocnemis curvipes which showed a distinct preference for pods growing above the leaf canopy. The feeding activity of Aspavia armigera was not affected by the position of pods on the plant. Overall, the study suggests that cowpea genotypes with a short flowering period and pods held above the leaf canopy offer the most promise in the management of pod-sucking pests.  相似文献   

4.
Most models for canopy photosynthesis require a large number of parameters as input which have to be determined by means of direct measurements. Such measurements are usually expensive, time consuming and destructive. The objective of the present study was, therefore, to develop a simple but accurate canopy photosynthesis model based on a minimum number of parameters that can be determined non-destructively. The results from previous studies were used to derive an empirical expression which describes the variation in leaf photosynthetic capacity (Pm) as a function of the light distribution in the canopy. The light distribution itself was calculated with a simple model which assumes only three leaf angle classes (0–30°, 30–60° and 60–90°). The leaf area index was determined indirectly from measurements of direct radiation below the canopy. The result was a model for canopy photosynthesis that requires only a few parameters. These parameters are the leaf photosynthetic capacity at the top of the canopy, the relative frequency of leaves in each of the three leaf angle classes, and the fraction of direct radiation below the canopy. Each of these parameters can be determined by means of simple non-destructive measurements. The model was applied to dense stands of two monocotyledonous species: rice (Oryza sativa L.) and pearl millet (Pennisetum americanum (L.) K. Schum.). The rates of canopy photosynthesis thus calculated were compared to those obtained with a more elaborate reference model. The differences between the values obtained with the two models were small. The present photosynthesis model can, therefore, be considered to be a suitable alternative for the more elaborate model. It was further discussed that, since the model is based on purely non-destructive measurements, it will be particularly useful in cases where it is required to estimate canopy photosynthesis at regular intervals over a length of time or in stands of vegetation that cover large areas of land.  相似文献   

5.
Fischer  Erika S.  Bremer  Elke 《Plant and Soil》1993,155(1):419-422
Phaseolus vulgaris was cultured either with or without magnesium in an aerated nutrient solution in growth chambers from 21 days after germination. Five days after transfer to Mg-deficient nutrient solution, terminal leaflets of first trifoliate leaves stopped expansion. From the fifth day after transfer, the net assimilation rate, the transpiration rate and the leaf water vapour conductance of first trifoliate leaves of the deficient plants declined. Following resupply of Mg on the seventh day after transfer to the Mg-deficient solution, the assimilation rate increased to 93% by the 12th day, the transpiration rate to 76% and the leaf water vapour conductance to 50% of the control plants.  相似文献   

6.
Carex acutiformis and Brachypodium pinnatum were grown with a uniform distribution of photosynthetic photon flux density (PFD) with height, and in a vertical PFD gradient similar to the PFD gradient in a leaf canopy. Distribution of organic leaf N and light-saturated rates of photosynthesis were determined. These parameters were also determined on plants growing in a natural vegetation stand. The effect of a PFD gradient was compared with the effect of a leaf canopy. In Brachypodium, plants growing in a vegetation stand had increasing leaf N with plant height. However, distribution of leaf N was not influenced by the PFD gradient treatment. The gradient of leaf N in plants growing in a leaf canopy was not due to differences within the long, mostly erect, leaves but to differences between leaves. In Carex, however, the PFD gradient caused a clear increase of leaf N with height in individual leaves and thus also in plants. The leaf N gradient was similar to that of plants growing in a leaf canopy. Leaf N distribution was not affected by nutrient availability in Carex. In most cases, photosynthesis was positively related to leaf N. Hence, lightsaturated rates of photosynthesis increased towards the top of the plants growing in leaf canopies in both species and, in Carex, also in the PFD gradient, thus contributing to increased N use efficiency for photosynthesis of the whole plant. It is concluded that in Carex the PFD gradient is the main environmental signal for leaf N allocation in response to shading in a leaf canopy, but one or more other signals must be involved in Brachypodium.  相似文献   

7.
Phytoseiid mites were sampled in a grapefruit orchard at various times of the day to study their diurnal and seasonal distributions in the tree canopy. Samples were collected on 14, 20 and 28 October 1999 at 2 h intervals from 0600 to 2200 h. Similar samples were collected in a grapefruit orchard at 3 h intervals from 0600 to 2100 h on 9 and 16 March and on 17 and 24 August 2000 for phytoseiid mites. No differences in numbers of phytoseiid motiles were observed among the hours sampled in any of the three months. However, significant differences were observed in the number of phytoseiids per leaf based on location within the tree (eastern, western sides of the canopy or interior). Interior leaves collected in March and August 2000 had higher numbers of phytoseiids than exterior leaves taken from either the eastern or western sides of the tree canopy. Phytoseiids were more abundant in the March 2000 samples (mean = 1.10 phytoseiids/leaf) than in either October 1999 or August 2000 samples (mean = 0.16 and 0.19 phytoseiids/leaf, respectively). Prevalent phytoseiid species were Typhlodromalus peregrinus (Muma) (42.1%) and Iphiseiodes quadripilis (Banks) (50.4%) in October 1999, Typhlodromalus peregrinus (Muma) (76.2%) in March 2000, and Euseius mesembrinus (Dean) (54%) in August 2000.  相似文献   

8.
A negative correlation between constitutive and inducible resistance across plant populations is expected for a variety of reasons; however, empirical evidence for such trade-offs remain ambiguous, particularly for crop plants. The current study investigated the relationship between constitutive and inducible resistance in vegetative-stage soybeans (V5-V6) against larvae of the generalist defoliator, Spodoptera frugiperda. Eighteen soybean genotypes differing in their constitutive resistance to coleopteran or lepidopteran defoliators were used over four experiments. Exogenous jasmonic acid (JA, 2 mM) was used to induce plants. Constitutive resistance of each genotype was estimated by measuring weight gains, foliar consumption, and foliar conversion efficiency in short-term feeding assays on excised leaf disks of terminal trifoliate leaves of plants not treated with JA. JA was applied to plants immediately after removing leaf material for assays of constitutive resistance, and induced resistance was estimated 48 h after application of JA using leaf disks from the remaining leaf tissue of the same trifoliate used for measuring constitutive resistance. Larval weight gains before JA treatments revealed genotypic variability in constitutive resistance. . Overall, reductions in weight gain (28.7% to 76.7%), foliar consumption (3.7% - 65%) and conversion efficiency (10.9% - 42.2%) were found in JA treatments. Significant (P < 0.05) or marginally significant (P < 0.10) negative correlations between constitutive resistance (larval weight gains on non-induced plants) and induced resistance (differences in weight gains before and after induction) were found in all four experiments, suggesting tradeoff between the two modes of resistance does exist in soybean for this herbivore. Additional evidence for tradeoffs between constitutive and inducible resitance was also found in the analysis of consumption data. Comparisons of consumption and conversion efficiencies suggest that similar antibiotic and antixenotic factors are involved in constitutive and inducible resistance to fall armyworm in soybean.  相似文献   

9.
Shoots of the monocotyledonous perennial Carex acutiformis were grown in open (28 shoots m−2) and dense stands (280 shoots m−2). For fully grown stands the distribution of relative PPFD and leaf nitrogen per unit leaf area over canopy depth was determined. Light response of photosynthesis was measured on leaf segments sampled at various heights in the stands. Relations between parameters of these curves and leaf nitrogen were investigated. Simulations showed that in the open stand daily canopy photosynthesis was not affected by nitrogen redistribution in the canopy. For the dense stand however, a uniform nitrogen distribution would lead to only 73% of the maximum net carbon gain by the stand under optimal nitrogen distribution. The actual canopy photosynthesis was only 7% less than this theoretical maximum; the actual nitrogen distribution of the dense stand clearly tended to the optimal distribution. The vertical pattern of the nitrogen distribution was to a large extent determined by the minimum leaf nitrogen content. The relatively high minimum leaf nitrogen content found for Carex leaves may perhaps be necessary to maintain the physiological function of the basal parts of the leaves.  相似文献   

10.
We examined the searching behavior of a guild of primary parasitoids which attack the green cloverworm,Plathypena scabra (Fabricius), as well as that of an associated hyperparasitoid. We hypothesized that self-superparasitism is an important constraint on the foraging behavior of primary parasitoids, and therefore these parasitoids should avoid portions of the soybean canopy where parasitized caterpillars accumulate. Conversely, we hypothesized that the hyperparasitoid preferentially searches parts of the canopy where parasitized caterpillars accumulate. In a greenhouse experiment, we found that exposure to parasitoids [eitherCotesia marginiventris (Cresson) orDiolcogaster facetosa Ashmead] resulted in the accumulation of caterpillars lower in the canopy. In a field experiment, we measured the amount of time parasitoids spent searching in each of three strata (upper, middle, bottom) of the soybean canopy. Leaf area in each stratum was used to calculate expected values for search effort. The time spent searching each of the strata was proportional to leaf area for all primary parasitoids, exceptD. facetosa, which spent significantly more time searching the top stratum of plants than predicted by leaf area in that stratum. The hyperparasitoidMesochorus discitergus (Say) tended to search the bottom stratum of the canopy. Thus only one of the three primary parasitoids appears to search in a manner that would reduce its rate of encounter with previously parasitized green cloverworms. The hyperparasitoid searching pattern may increase its probability of encountering parasitized caterpillars, thereby increasing its foraging success.  相似文献   

11.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

12.
Summary Water and nitrogen regimes of Larrea tridentata shrubs growing in the field were manipulated during an annual cycle. Patterns of leaf water status, leaf water relations characteristics, and stomatal behavior were followed concurrently. Large variations in leaf water status in both irrigated and nonirrigated individuals were observed. Predawn and midday leaf water potentials of nonirrigated shrubs were lowest except when measurements had been preceded by significant rainfall. Despite the large seasonal variation in leaf water status, reasonably constant, high levels of turgor were maintained. Pressure-volume curve analysis suggested that changes in the bulk leaf osmotic potential at full turgor were small and that nearly all of the turgor adjustment was due to tissue elastic adjustment. The increase in tissue elasticity with increasing water deficit manifested itself as a decrease in the relative water content at zero turgor and as a decrease in the tissue bulk elastic modulus. Because of large hydration-induced displacement in the osmotic potential and relative water content at zero turgor, it was necessary to use shoots in their natural state of hydration for pressure-volume curve determinations. Large diurnal and seasonal differences in maximum stomatal conductance were observed, but could not easily be attributed to variations in leaf water potential or leaf water relations characteristics such as the turgor loss point. The single factor which seemed to account for most of the diurnal and seasonal differences in maximum stomatal conductance between individual shrubs was an index of soil/root/ shoot hydraulic resistance. Daily maximum stomatal conductance was found to decrease with increasing soil/root/ shoot hydraulic resistance. This pattern was most consistent if the hydraulic resistance calculation was based on an estimate of total canopy transpiration rather than the more commonly used transpiration per unit leaf area. The reasons for this are discussed. It is suggested that while stomatal aperture necessarily represents a major physical resistance controlling transpiration, plant hydraulic resistance may represent the functional resistance through its effects on stomatal aperture.  相似文献   

13.
Summary Canopy photosynthesis is difficult to measure directly or to predict with complex models demanding knowledge of seasonal variation in environmental and physiological properties of the canopy. Trees in particular offer a challenge with their large, aerodynamically rough and seasonally-changing canopy properties. In this paper we assess the possibility of using specific leaf weight to predict seasonal and annual net photosynthetic rate in deciduous (Larix sp.) and evergreen (Picea abies) conifers.Annual photosynthetic rate and specific leaf weight of different positions of the crown in both species were highly correlated (r 2=0.930). Annual carbon uptake by different segments in a mature P. abies crown was closely related to leaf biomass. The relationship was improved by adjusting the leaf biomass of each segment in regard to its specific leaf weight relative to the maximum found in the canopy. The adjustment accounted for associated differences in photosynthetic activity. This combined structural index (leaf biomassxrelative specific leaf weight) could, when calibrated, predict the total annual carbon uptake by different parts of the crown. If direct measurements of photosynthesis are not available, the combined structural index may still serve as a comparative estimator of annual carbon uptake.  相似文献   

14.
Subdominant evergreen broad-leaved plants occurring in deciduous forests throughout temperate zones have only a short window of optimum photoassimilation in spring before canopy closure. Yet increasing photosynthetic and metabolic activity occurs concurrently with reductions in freezing resistance, resulting in vulnerability of plant tissues to late spring freezing events. Our goal was to document the temporal patterns of photosynthesis versus freezing resistance during spring in adult and juvenile leaf phenotypes of Hedera helix in Switzerland. Freezing resistances in all leaves were well below long-term minimum temperatures experienced at the study site, with adult leaf phenotypes in the forest canopy being more freezing resistant than juvenile leaves occurring closer to the ground. Reductions in freezing resistance were followed by increases in leaf photosynthetic capacities, which appeared synchronized among leaf phenotypes. Adult canopy leaves maintained a higher freezing resistance but lower photosynthetic capacity than juvenile leaves through the end of winter and into early spring. However, shortly after the cessation of freezing temperatures, adult leaves greatly increased their photosynthetic capacity relative to juvenile leaves, yet maintained freezing resistances sufficient to resist late spring freezing events. These patterns highlight the importance of the tradeoff in H. helix between exposure to potentially damaging cold temperatures in late spring and the need for high photosynthetic carbon gains before full canopy closure.  相似文献   

15.
Leaf cytokinins (CKs) were profiled within four locations throughout the inner and outer layers of a mature sugar maple (Acer saccharum) canopy. Leaf CK was associated with leaf gas exchange activity and some corresponding microclimate variables. Both inner and outer layers in the upper canopy had higher concentrations of leaf CKs than the lower canopy layers and the difference was comprised primarily by riboside forms of CK. Transpiration (E) showed a similar pattern to leaf CK content, with significantly higher rates in the upper canopy. There was, however, no clear pattern discernable in stomatal conductance (gs), other than it tended to be higher in the outer canopy layers. The upper/outer canopy showed a significantly different environment than all other canopy positions with higher photosynthetically active radiation (PAR), ultra-violet light (UV-B) and leaf temperature. Simple linear regression analysis showed that the nucleotide CK group (including iPNT, cis- and trans-[9RMP]Z, [9RMP]DZ) was positively related to PAR. Exogenous applications of benzylaminopurine (BAP), showed that low concentrations of BAP reduced E and g s, and indicated that CK may help regulate stomatal aperture. The similar patterns in E and CK content suggest that CKs and leaf gas exchange are functionally connected.  相似文献   

16.
Summary A hypothesis that a dense stand should develop a less uniform distribution of leaf nitrogen through the canopy than an open stand to increase total canopy photosynthesis was tested with experimentally established stands of Lysimachia vulgaris L. The effect of stand density on spatial variation of photon flux density, leaf nitrogen and specific leaf weight within the canopy was examined. Stand density had little effect on the value of the light extinction coefficient, but strongly affected the distribution of leaf nitrogen per unit area within a canopy. The open stand had more uniform distribution of leaf nitrogen than the dense stand. However, different light climates between stands explained only part of the variation of leaf nitrogen in the canopy. The specific leaf weight in the canopy increased with increasing relative photon flux density and with decreasing nitrogen concentration.  相似文献   

17.
Aspergillus flavus Link ex Fries and A. parasiticus Speare can invade peanut kernels and under certain environmental conditions produce unacceptable levels of the mycotoxin aflatoxin. A concerted effort is underway to reduce aflatoxin contamination in peanut and peanut products. A potentially effective method of control in peanut is the discovery and use of genes for resistance to either fungal invasion or aflatoxin formation. The objective of the present experimental study was to develop an effective and efficient procedure for screening individual plants or pods of single plants for resistance to invasion by the aflatoxigenic fungi and subsequent aflatoxin production. Methods of obtaining adequate drought-stress and fungal infection were developed through this series of experiments. By completely isolating the pods from the root zone and imposing drought-stress only on pegs and pods, high levels of fungal infection were observed. High amounts of preharvest aflatoxin accumulation were also produced by completely isolating the pods from the root zone. Mid-bloom inoculation with A. parasiticus-contaminated cracked corn and drought-stress periods of 40 to 60 days were the most effective procedures. This technique was used to assess peanut genotypes previously identified as being partially resistant to A. parasiticus infection or aflatoxin contamination, and segregating populations from four crosses. Variability in aflatoxin contamination was found among the 11 genotypes evaluated, however, none were significantly lower than the standard cultivars. Broad-sense heritability of four crosses was estimated through evaluation of seed from individual plants in the F2 generation. The heritability estimates of crosses GFA-2 × NC-V11 and Tifton-8 × NC-V11 were 0.46 and 0.29, respectively, but mean aflatoxin contamination levels were high (73,295 and 27,305 ppb). This greenhouse screening method could be an effective tool when genes for superior aflatoxin resistance are identified.Cooperative investigation of the USDA-ARS and the University of Georgia, College of Agriculture.  相似文献   

18.
Spatial and temporal changes in canopy structure were studied in 1988 and 1989 in a Mediterranean Quercus ilex forest in north-eastern Spain. Due to differences in precipitation patterns the 1989 growing season was drier than the 1988 growing season. Sampling was conducted in parallel at two sites which represent endpoints along a slope gradient within a watershed (ridge top at 975 m, and valley bottom at 700 m). At both sites, similar inter-annual changes in canopy structure were observed in response to differences in water availability. Samples harvested in the upper 50 cm of the canopy during 1989 exhibited a decrease in both average leaf size and the ratio of young to old leaf and stem biomass relative to samples obtained in 1988. At the whole canopy level, a decrease in leaf production efficiency and an increase in the stem to leaf biomass ratio was observed in 1989. Temporal changes in canopy leaf area index (LAI) were not statistically significant. Average LAI values of Q. ilex at the two sites were not significantly different despite differences in tree stature and density (4.6 m2 m–2 at the ridge top, and 5.3 m2 m–2 at the valley bottom). Vertical distribution of leaves and stems within the canopy was very similar at the two locations, with more than 60% of the total LAI in the uppermost metre of the canopy. The possible significance of such an LAI distribution on the canopy carbon budget is discussed.  相似文献   

19.
Intracanopy variation in net leaf nitrogen (N) resorption and N cycling through leaves in mature walnut (Juglans regia L. cv Hartley) trees were monitored in 3 different years. Differential irradiance among the spurs sampled was inferred from differences among leaves in dry weight per unit area (LW/LA) which varied from 4.0 mg · cm–2 to 7.0 mg · cm–2 in shaded (S) and exposed (E) canopy positions, respectively. Our results, using 15N-depleted (NH4)2SO4 validated the concept that N influx and efflux through fully expanded leaves occurred concurrently during the period of embryo growth. Additionally, it also suggested that N influx into leaves was substantially greater in exposed as compared with shaded canopy positions. Because of its well documented phloem immobility, leaf Ca accumulation was used to better estimate the relative influx of N into exposed and shaded leaves. N cycling varied locally within the tree canopy, i. e. Ca (and presumably N) influx was 100% greater in exposed than shaded tree canopy positions, but influx was not influenced significantly by the proximity of developing fruit. In contrast, both the amount and percentage N efflux was significantly greater during embryo growth in fruit-bearing than defruited spurs. Net leaf N resorption averaged 2–4 times greater (25–30%) in fruit-bearing spurs than the 5–10% decrease in the leaf N content in defruited spurs. Since about 90% of leaf N content reportedly occurs as protein, fruit N demand apparently influenced protein turnover and catalysis in associated spur leaves. The amount of leaf N resorption was greater in exposed than shaded positions in the tree canopy in 2 of the 3 years of data collection. Our data show that like leaf N content, N influx, N efflux and net leaf N resorption vary throughout mature walnut tree canopies under the combined local influences of fruiting and irradiance.  相似文献   

20.
Pink-pigmented facultative methylotrophic bacteria (PPFMs) have been found on the surfaces of leaves of most plants tested. We found PPFMs on the leaf surfaces of all 40 plants (38 species) tested and on soybean pods by pressing onto AMS medium with methanol as the sole carbon source. The abundance ranged from 0.5 colony forming unit (cfu) /cm2 to 69.4 cfu/cm2 on the leaf surfaces. PPFMs were found in homogenized leaf tissues of only 4 of the species after surface disinfestation with 1.05% sodium hypochlorite and were rarely found in cultures initiated from surface disinfested Datura innoxia leaves or inside surface disinfested soybean pods. Of 20 antibiotics tested for PPFM growth inhibition, rifampicin was the most effective and of seven others which also inhibited PPFM growth, cefotaxime should be the most useful due to the expected low plant cell toxicity. These antibiotics could be used in concert with common surface sterilization procedures to prevent the introduction or to eliminate PPFM bacteria in tissue cultures. Thus, while PPFMs are present on the surfaces of most plant tissues, surface disinfestation alone can effectively remove them so that uncontaminated tissue cultures can be initiated in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号