首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
昆虫与植物的协同进化:寄主植物-铃夜蛾-寄生蜂相互作用   总被引:5,自引:1,他引:4  
王琛柱  钦俊德 《昆虫知识》2007,44(3):311-319
近数10年内,Ehrlich和Raven于1964年提出的协同进化理论及Jermy于1976年提出的顺序进化理论极大地促进了对昆虫与植物相互作用的研究。文章首先简要介绍有关理论,对植食性昆虫与植物关系研究的若干核心问题进行评述。主要问题包括(1)植食性昆虫如何选择寄主植物?(2)植物次生物质是否作为植物防御昆虫取食的重要屏障?(3)昆虫能否适应植物的化学防御?(4)植食性昆虫寄主范围是否是从广到专演化的?随之,作者结合对铃夜蛾Helicoverpa系统研究取得的结果,对上述问题做了进一步的论证和阐述。最后,在继承协同进化、顺序进化等理论精髓的基础上,根据当今三营养级相互作用领域的研究新进展,提出一个新的假说,即多营养级协同进化假说。该假说肯定植物次生物质在植物防御和昆虫识别寄主植物上的重要作用,同时把其他营养级并列放入交互作用的系统,特别强调第三营养级在昆虫与植物关系演化过程中的参与和寄主转移与昆虫食性专化和广化的联系。  相似文献   

2.
跳甲的食性及食性分化   总被引:3,自引:0,他引:3  
跳甲隶属于鞘翅目叶甲科跳甲亚科,是一类具有重要经济意义的植食性昆虫。本文对跳甲食性及食性分化的研究进展进行了综述,诠释了寄主植物的概念,分析了昆虫食性专化发生的原因。跳甲亚科的寄主植物的范围虽广,但有85%的属为专食性属。一般认为,专食性的跳甲亚科和萤叶甲亚科是由食性较广的叶甲亚科进化而来的,食性分化在其中可能起了重要作用。广食性代价推动了食性分化的发生,广食性代价假说受到越来越多的实验支持。有关食性分化方向的观点倾向于寄主植物转向化学物质相似的植物,表现为寄主转移、寄主扩张和形成寄主型等;食性分化推动了同域物种形成。跳甲食性分化的研究对于丰富研究昆虫与植物相互关系的协同进化理论也有重要作用。  相似文献   

3.
在我们居住的地球上,有着无以数计的昆虫,它们以各种方式获取生存和繁衍。其中以植物为食的,被称作植食性昆虫,它们与植物存在着一种食与被食的关系,并且取食时表现出种种有趣的行为。 一、选择行为 植食性昆虫对取食植物的选择是经过长期适应并遗传下来的。尽管它们存在着狭食性和广食性的区别,有的能移取食两种或两种以上的植物,但它们喜食的植物和喜食的程度仍然不同。  相似文献   

4.
入侵植物往往可以影响土壤线虫的群落结构。然而,入侵植物在入侵地并未完全逃逸地上植食性昆虫的取食危害,而我们对昆虫取食是否会调节入侵植物对土壤线虫群落的影响还知之甚少。在本研究中,我们探讨了地上植食性昆虫取食危害如何调节入侵植物空心莲子草(Alternanthera philoxeroides)对土壤线虫群落的影响,并研究了昆虫调节作用的时间效应。我们开展温室实验,对盆栽的空心莲子草施加三种不同的昆虫取食处理[无昆虫取食、专食性昆虫莲草直胸跳甲(Agasicles hygrophila)取食、广食性昆虫虾钳菜披龟甲(Cassida piperata)取食],并在移除所有植食性昆虫后的第1、10和20天测定土壤线虫的群落结构。此外,我们还测定了空心莲子草根系及根系分泌物的碳含量。研究发现,在植食性昆虫被移除的第1天,昆虫取食处理显著提高了空心莲子草根围土壤线虫的丰度,特别是植食性线虫。然而,随着时间推移,这种影响逐渐减退,并在后期(第10和20天)完全消失。此外,专食性昆虫莲草直胸跳甲和广食性昆虫虾钳菜披龟甲的取食危害对土壤线虫丰度的影响并无显著性差异。综上所述,本研究表明地上植食性昆虫的取食危害可以改变入侵植物对土壤线虫群落的影响,但昆虫的调节作用是短暂的。此外,我们的研究强调了在评估入侵植物的影响时,需要同时考虑地上和地下生物群落。  相似文献   

5.
昆虫的食性很复杂,但目前常用的分类,是按昆虫所取食物的性质分为:植食性、肉食性和杂食性。取食活植物的为植食性,取食动物的为肉食性,既能取食动物又能取食植物的为杂食性。植食性昆虫,又以选择食物种类多寡而分为单食性,寡食性和多食性。昆虫仅取食一种植物的为单食性。寡食性是指以某一类群的植物为食的昆虫。多食性是以多种不同类群的植物为食的昆虫。  相似文献   

6.
植食性昆虫对植物的反防御机制   总被引:9,自引:0,他引:9  
本文综述了植食性昆虫对植物的反防御机制.一方面,植食性昆虫可通过其快速进化的寄主选择适应性,改变取食策略,调节生长发育的节律,以及规避自然天敌等抑制、逃避或改变植物的防御,即行为防御机制;另一方面,植食性昆虫可适应植物蛋白酶抑制剂、逃避植物防御伤信号、解毒植物次生物质,以及抑制植物阻塞反应来对植物防御进行反防御,即生理和生化防御机制.其中,昆虫抑制植物伤信号,防止植物阻塞反应是反防御机制的研究热点.昆虫反防御的研究有助于提高对昆虫-植物间协同进化关系的认识,并为害虫治理和抗虫植物的培育提供新的思路.  相似文献   

7.
刘志源  孙玉诚  王国红 《昆虫知识》2012,49(6):1696-1702
在长期的协同进化中,植物建立起应对昆虫取食为害的精密而又复杂的防御机制,植物转录组调控中防御应答基因的表达及防御物质的合成因不同的昆虫取食方式而异。一般来说,咀嚼式口器昆虫取食时造成大面积组织伤害,可诱导植物产生伤害反应;而刺吸式口器昆虫因其特殊的口针取食,诱导植物激活病原体相关的防御途径。不同的防御途径激活不同的识别机制和信号途径。本文从信号识别和转导上综述了不同食性的昆虫取食植物时所引发的防御反应,分析了昆虫-植物相互作用关系的分子机制。  相似文献   

8.
潜叶昆虫广泛分布于鳞翅目、双翅目、鞘翅目和膜翅目中,其幼虫潜入叶片内部生活和取食,是一类用于研究植物-昆虫-天敌种间关系和协同进化的重要模式生物。有些潜叶昆虫是重要农林害虫。相比外食性昆虫,在叶内取食的潜叶昆虫幼虫更易受到叶片物理性状的直接影响。叶片的着生位置、朝向、大小、颜色和表皮毛等直接决定潜叶虫成虫的取食和产卵选择,从而影响幼虫的空间分布和寄主适应。叶片的某些物理性状也会直接影响幼虫的取食行为、生长发育和被寄生率。研究叶片物理性状的防御作用以及潜叶昆虫对这些防御的适应,有助于了解潜叶昆虫-寄主植物的协同进化。另一方面,外界环境和遗传育种都有可能改变植物叶片的物理特性,而对潜叶害虫产生抗性,从而实现潜叶害虫的可持续生态控制。  相似文献   

9.
昆虫对植物次生性物质的适应策略   总被引:20,自引:3,他引:17  
植物次生性物质是植食性昆虫在取食过程中遇到的主要障碍之一,也是天敌昆虫寻找寄主或猎物的主要信息来源。当今,昆虫学中的一些重要理论问题,如寄主植物的识别,食性的形成,植物求救信号的释放,天敌对寄主或猎物的识别和寻找机制等等,均与植物次生性物质有关。在长期的演化过程中,昆虫适应了植物次生性物质的种种不利作用,改变了这类物质对植物本身的防御作用,使其能充分地利用各分类阶元的植物次生性物质作为寻找寄主植物、昆虫寄主或猎物以及取食的信号。昆虫与植物次生性物质的这种关系是当今协同演化理论得以产生的主要依据之一。关于昆…  相似文献   

10.
植食性昆虫的学习行为   总被引:15,自引:2,他引:13  
李月红  刘树生 《昆虫学报》2004,47(1):106-116
学习是指因经历不同而导致的行为变化。在植食性昆虫中,学习主要包含习惯性反应、厌恶性学习、联系性学习、敏感性反应和嗜好性诱导等类型。昆虫在幼虫和成虫期都具有学习能力,但幼虫期食料和取食经历不会对成虫行为产生直接影响。昆虫学习行为的表现受其本身食性、寄主刺激物的类别及寄主植物时空分布动态等因子的影响。学习能力有助于植食性昆虫应对复杂多变的植物环境,提高对寄主植物的利用效率,有利于其生存繁衍。对害虫学习行为的了解可为栖境调控、行为调控等害虫治理方法提供重要  相似文献   

11.
Crop pollination by animals is an essential ecosystem service. Among animal-pollinated crops, distylous plants strongly depend on animal pollination. In distylous pollination systems, pollinator species are usually limited, although flowers of some distylous plants are visited by diverse animals. We studied the pollination biology of common buckwheat ( Fagopyrum esculentum ), a distylous crop mainly pollinated by honeybees and visited by many insect species, to evaluate the effects of non-honeybee species on pollination services. We focused on insects smaller than honeybees to determine their contribution to pollination. We applied pollination treatments with bags of coarse mesh to exclude flower visits by honeybees and larger insects and compared the seed set of bagged plants with that of untreated plants for pin and thrum flower morphs. We found a great reduction of seed set only in bagged pin flowers. We also confirmed that small insects, including ants, bees, wasps and flies, carried pin-morph pollen. These small insects transfer pollen from the short anthers of pin flowers to the short styles of thrum flowers, leading to sufficient seed set in thrum flowers. Consequently, small, non-honeybee insects have the potential to maintain at least half of the yield of this honeybee-dependent distylous crop.  相似文献   

12.
Combined studies of the communities and interaction networks of bird and insect pollinators are rare, especially along environmental gradients. Here, we determined how disturbance by fire and variation in sugar resources shape pollinator communities and interactions between plants and their pollinating insects and birds. We recorded insect and bird visits to 21 Protea species across 21 study sites and for 2 years in Fynbos ecosystems in the Western Cape, South Africa. We recorded morphological traits of all pollinator species (41 insect and nine bird species). For each site, we obtained estimates of the time since the last fire (range: 2–25 calendar years) and the Protea nectar sugar amount per hectare (range: 74–62 000 g/ha). We tested how post-fire age and sugar amount influence the total interaction frequency, species richness and functional diversity of pollinator communities, as well as pollinator specialization (the effective number of plant partners) and potential pollination services (pollination service index) of insects and birds. We found little variation in the total interaction frequency, species richness and functional diversity of insect and bird pollinator communities, but insect species richness increased with post-fire age. Pollinator specialization and potential pollination services of insects and birds varied differently along the environmental gradients. Bird pollinators visited fewer Protea species at sites with high sugar amount, while there was no such trend for insects. Potential pollination services of insect pollinators to Protea species decreased with increasing post-fire age and resource amounts, whereas potential pollination services of birds remained constant along the environmental gradients. Despite little changes in pollinator communities, our analyses reveal that insect and bird pollinators differ in their specialization on Protea species and show distinct responses to disturbance and resource gradients. Our comparative study of bird and insect pollinators demonstrates that birds may be able to provide more stable pollination services than insects.  相似文献   

13.
Many hypotheses suggest that pollinators act to maintain or change floral color morph frequencies in nature, although pollinator preferences do not always match color morph frequencies in the field. Therefore, non-pollinating agents may also be responsible for color morph frequencies. To test this hypothesis, we examined whether Raphanus sativus plants with white flowers received different amounts of florivory than plants with pink flowers, and whether florivores preferred one floral color over the other. We found that white-flowered plants received significantly more floral damage than pink-flowered plants in eight populations over 4 years in northern California. Both generalists and specialists on Brassicaceae preferred white petals in choice and short-term no choice tests. In performance tests, generalists gained more weight on white versus pink petals whereas specialists gained similar amounts of weight on pink and white morphs. Because our results suggest that florivores prefer and perform better on white versus pink flowers, these insects may have the opportunity to affect the frequency of color morphs in the field.  相似文献   

14.
Most carnivorous plants utilize insects in two ways: the flowers attract insects as pollen vectors for sexual reproduction, and the leaves trap insects for nutrients. Feeding on insects has been explained as an adaptation to nutrient‐poor soil, and carnivorous plants have been shown to benefit from insect capture through increased growth, earlier flowering and increased seed production. Most carnivorous plant species seem to benefit from insect pollination, although many species autonomously self‐pollinate and some propagate vegetatively. However, assuming that outcross pollen is advantageous and is a more important determinant of reproductive success than the nutrients gained from prey, there should be a selective pressure on carnivorous plants not to feed on their potential pollen vectors. Therefore, it has been suggested that carnivorous plants are subject to a conflict, often called the pollinator‐prey conflict (PPC). The conflict results from a trade‐off of the benefits from feeding on potentially pollinating insects versus the need to use them as pollen vectors for sexual reproduction. In this review we analyze the conditions under which a PPC may occur, review the evidence for the existence of PPCs in carnivorous plants, and explore the mechanisms that may be in place to prevent or alleviate a PPC. With respect to the latter, we discuss how plant signals such as olfactory and visual cues may play a role in separating the functions of pollinator attraction and prey capture.  相似文献   

15.
Integration of alien plants into a native flower-pollinator visitation web   总被引:11,自引:0,他引:11  
Introduced alien species influence many ecosystem services, including pollination of plants by animals. We extend the scope of recent 'single species' studies by analysing how alien plant species integrate themselves into a native flower visitation web. Historical records for a community in central USA show that 456 plant species received visits from 1429 insect and 1 hummingbird species, yielding 15 265 unique interactions. Aliens comprised 12.3% of all plant species, whereas only a few insects were alien. On average, the flowers of alien plants were visited by significantly fewer animal species than those of native plants. Most of these visitors were generalists, visiting many other plant species. The web of interactions between flowers and visitors was less richly connected for alien plants than for natives; nonetheless, aliens were well integrated into the native web. Because most visitors appear to be pollinators, this integration implies possible competitive and facilitative interactions between native and alien plants, mediated through animal visitors to flowers.  相似文献   

16.
Dioecy, a breeding system where individual plants are exclusively male or female, has evolved repeatedly. Extensive theory describes when dioecy should arise from hermaphroditism, frequently through gynodioecy, where females and hermaphrodites coexist, and when gynodioecy should be stable. Both pollinators and herbivores often prefer the pollen‐bearing sex, with sex‐specific fitness effects that can affect breeding system evolution. Nursery pollination, where adult insects pollinate flowers but their larvae feed on plant reproductive tissues, is a model for understanding mutualism evolution but could also yield insights into plant breeding system evolution. We studied a recently established nursery pollination interaction between native Hadena ectypa moths and introduced gynodioecious Silene vulgaris plants in North America to assess whether oviposition was biased toward females or hermaphrodites, which traits were associated with oviposition, and the effect of oviposition on host plant fitness. Oviposition was hermaphrodite‐biased and associated with deeper flowers and more stems. Sexual dimorphism in flower depth, a trait also associated with oviposition on the native host plant (Silene stellata), explained the hermaphrodite bias. Egg‐receiving plants experienced more fruit predation than plants that received no eggs, but relatively few fruits were lost, and egg receipt did not significantly alter total fruit production at the plant level. Oviposition did not enhance pollination; egg‐receiving flowers usually failed to expand and produce seeds. Together, our results suggest that H. ectypa oviposition does not exert a large fitness cost on host plants, sex‐biased interactions can emerge from preferences developed on a hermaphroditic host species, and new nursery pollination interactions can arise as negative or neutral rather than as mutualistic for the plant.  相似文献   

17.
Phylogenetic studies are increasing our understanding of the evolution of associations between phytophagous insects and their host plants. Sequential evolution, i.e. the shift of insect herbivores onto pre-existing plant species, appears to be much more common than coevolution, where reciprocal selection between interacting insects and plants is thought to induce chemical diversification and resistance in plants and food specialization in insects.Extreme host specificity is common in phytophagous insects and future studies are likely to reveal even more specialization. Hypotheses that assume that food specialists have selective advantages over generalists do not seem to provide a general explanation for the ubiquity of specialist insect herbivores. Specialists are probably committed to remain so, because they have little evolutionary opportunity to reverse the process due to genetically determined constraints on the evolution of their physiology or nervous system. The same constraints might result in phylogenetic conservatism, i.e. the frequent association of related insect herbivores with related plants. Current phylogenetic evidence, however, indicates that there is no intrinsic direction to the evolution of specialization.Historical aspects of insect-host plant associations will be illustrated with the small ermine moth genus Yponomeuta. Small ermine moths show an ancestral host association with the family Celastraceae. The genus seems to be committed to specialization per se rather than to a particular group of plants. Whatever host shift they have made in their evolutionary past (onto Rosaceae, Crassulaceae, and Salicaceae), they remain monophagous. The oligophagous Y. padellus is the only exception. This species might comprise a mosaic of genetically divergent host-associated populations.  相似文献   

18.
The difficulties specialized phytophagous insects face in finding habitats with an appropriate host should constrain their dispersal. Within the concept of metacommunities, this leads to the prediction that host-plant specialists should sort into local assemblages according to the local environmental conditions, i.e. habitat conditions, whereas assemblages of host-plant generalists should depend also on regional processes. Our study aimed at ranking the importance of local environmental factors and species composition of the vegetation for predicting the species composition of phytophagous moth assemblages with either a narrow or a broad host range. Our database consists of 351,506 specimens representing 820 species of nocturnal Macrolepidoptera sampled between 1980 and 2006 using light traps in 96 strict forest reserves in southern Germany. Species were grouped as specialists or generalists according to the food plants of the larvae; specialists use host plants belonging to one genus. We used predictive canonical correspondence and co-correspondence analyses to rank the importance of local environmental factors, the species composition of the vegetation and the role of host plants for predicting the species composition of host-plant specialists and generalists. The cross-validatory fit for predicting the species composition of phytophagous moths was higher for host-plant specialists than for host-plant generalists using environmental factors as well as the composition of the vegetation. As expected for host-plant specialists, the species composition of the vegetation was a better predictor of the composition of these assemblages than the environmental variables. But surprisingly, this difference for specialized insects was not due to the occurrence of their host plants. Overall, our study supports the idea that owing to evolutionary constraints in finding a host, host-plant specialists and host-plant generalists follow two different models of metacommunities: the species-sorting and the mass-effect model.  相似文献   

19.
Thousands of plant species worldwide are dependent on birds for pollination. While the ecology and evolution of interactions between specialist nectarivorous birds and the plants they pollinate is relatively well understood, very little is known on pollination by generalist birds. The flower characters of this pollination syndrome are clearly defined but the geographical distribution patterns, habitat preferences and ecological factors driving the evolution of generalist‐bird‐pollinated plant species have never been analysed. Herein I provide an overview, compare the distribution of character states for plants growing on continents with those occurring on oceanic islands and discuss the environmental factors driving the evolution of both groups. The ecological niches of generalist‐bird‐pollinated plant species differ: on continents these plants mainly occur in habitats with pronounced climatic seasonality whereas on islands generalist‐bird‐pollinated plant species mainly occur in evergreen forests. Further, on continents generalist‐bird‐pollinated plant species are mostly shrubs and other large woody species producing numerous flowers with a self‐incompatible reproductive system, while on islands they are mostly small shrubs producing fewer flowers and are self‐compatible. This difference in character states indicates that diverging ecological factors are likely to have driven the evolution of these groups: on continents, plants that evolved generalist bird pollination escape from pollinator groups that tend to maintain self‐pollination by installing feeding territories in single flowering trees or shrubs, such as social bees or specialist nectarivorous birds. This pattern is more pronounced in the New compared to the Old World. By contrast, on islands, plants evolved generalist bird pollination as an adaptation to birds as a reliable pollinator group, a pattern previously known from plants pollinated by specialist nectarivorous birds in tropical mountain ranges. Additionally, I discuss the evolutionary origins of bird pollination systems in comparison to systems involving specialist nectarivorous birds and reconstruct the bird pollination system of Hawaii, which may represent an intermediate between a specialist and generalist bird pollination system. I also discuss the interesting case of Australia, where it is difficult to distinguish between specialist and generalist bird pollination systems.  相似文献   

20.
We studied biotic and abiotic factors that influence pollination in two sympatric winter flowering species. Helleborus foetidus and Helleborus bocconei flower simultaneously in winter. Although climatic conditions are not favorable for biotic pollination both species rely mainly on large bees of the genus Bombus. At the beginning of flowering, harsh climatic conditions are restrictive for insect visits. As flowering continues and temperatures rise, pollinator activity increases. The two plant species share pollinators that visit them indiscriminately. The flowers of the two species differ in form and insects visit H. foetidus by inserting their heads and H. bocconei ventrally: pollen load on insects is highly specialized. With the arrival of spring, many other species start to bloom and in spite of the large number of flowers still on the plants insects abandon Helleborus species. At the end of spring increasing biotic interactions take away pollinators from the Helleborus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号