首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Nineteen independently isolated hybridomas producing monoclonal antibodies to the glycoprotein of vesicular stomatitis virus were isolated and studied for their capacity to neutralize viral infectivity. By measuring competitive binding of 125I-labeled monoclonal antibodies in a radioimmunoassay. 11 different, non-cross-reacting antigenic determinants were identified on the vesicular stomatitis virus G protein. All monoclonal antibodies reacting with determinants 1, 2, 3, and 4 resulted in viral neutralization, whereas those binding to the other seven determinants did not neutralize infectivity. The mixture of two monoclonal antibodies binding to different determinants resulted in a more rapid neutralization than either antibody alone, suggesting that different antibodies can exert a synergistic effect on viral neutralization. Kinetic experiments revealed biphasic neutralization curves similar to those expected for heterologous antibody. No evidence could be obtained to relate biphasic kinetics of viral neutralization to heterogeneous populations either of antibody molecules or of virus. The possible significance of the kinetic data with monoclonal antibodies is discussed.  相似文献   

2.
The human immunodeficiency virus envelope glycoproteins function as trimers on the viral surface, where they are targeted by neutralizing antibodies. Different monoclonal antibodies neutralize human immunodeficiency virus type 1 (HIV-1) infectivity by binding to structurally and functionally distinct moieties on the envelope glycoprotein trimer. By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, we demonstrate that the HIV-1 envelope glycoprotein trimer is inactivated by the binding of a single antibody molecule. Virus neutralization requires essentially all of the functional trimers to be occupied by at least one antibody. This model applies to antibodies differing in neutralizing potency and to virus isolates with various neutralization sensitivities. Understanding these requirements for HIV-1 neutralization by antibodies will assist in establishing goals for an effective AIDS vaccine.  相似文献   

3.
Previous molecular and immunological studies have mapped four neutralization sites on human rhinovirus type 14 (B. Sherry, A. G. Mosser, R. J. Colonno, and R. R. Rueckert, J. Virol. 57:246-257, 1986). Eight monoclonal antibodies, one pair for each of the four target sites and all belonging to a single isotype, immunoglobulin G2a, were studied under conditions which resulted in 95% neutralization of infectious viral particles. All eight antibodies shifted the isoelectric point of virions from 6.7 to much more acidic forms, ranging from pI 1.8 to 3.2. In addition, antibodies targeted against three of the four neutralization sites caused significant aggregation of virions under the neutralization conditions employed. Aggregation could be reversed by digesting virus-antibody complexes with papain. Following papain digestion, the acidic pIs of three of the neutralized virus preparations returned to neutral and infectivity was restored. Membrane-binding assays with virus neutralized with a nonaggregating antibody showed a dose-related inhibition of virus attachment to cellular receptors. Purified Fab fragments at a 13- to 61-fold-higher concentration than intact antibodies caused a comparable isoelectric shift, neutralized virions in the absence of aggregation, and interfered with attachment of virions to host cell receptors in a membrane-binding assay. These findings suggest that neutralizing antibodies interfere with the attachment of rhinoviruses to cellular receptors and that bivalent attachment of antibody is not a prerequisite for neutralization.  相似文献   

4.
Foot-and-mouth disease virus structural protein VP1 elicits neutralizing and protective antibody and is probably the viral attachment protein which interacts with cellular receptor sites on cultured cells. To study the relationships between epitopes on the molecule related to neutralization and cell attachment, we tested monoclonal antibodies prepared against type A12 virus, isolated A12 VP1, and a CNBr-generated A12 VP1 fragment for neutralization and effect on viral absorption. The antibodies selected for analysis neutralized viral infectivity with varying efficiencies. One group of antibodies caused a high degree of viral aggregation and inhibited the adsorption of virus to cells by 50 to 70%. A second group of antibodies caused little or no viral aggregation but inhibited the adsorption of virus to cells by 80 to 90%. One antibody, which is specific for the intact virion, caused little viral aggregation and had no effect on the binding of virus to specific cellular receptor sites. Thus, at least three antigenic areas on the surface of foot-and-mouth disease virus which were involved in neutralization were demonstrated. One of the antigenic sites appears to have been responsible for interaction with the cellular receptor sites on the surface of susceptible cells.  相似文献   

5.
Monoclonal antibodies (MAbs) to the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus delineate seven overlapping antigenic sites which form a continuum on the surface of the molecule. Antibodies to five of these sites neutralize viral infectivity principally by preventing attachment of the virion to cellular receptors. Through the identification of single amino acid substitutions in variants which escape neutralization by MAbs to these five antigenic sites, a neutralization map of HN was constructed, identifying several residues that contribute to the epitopes recognized by MAbs which block the attachment function of the molecule. These epitopes are defined, at least in part, by three domains on HN: residues 193 to 201; 345 to 353 (which include the only linear epitope we have identified in HN); and a C-terminal domain composed of residues 494, 513 to 521, and 569. To identify HN residues directly involved in receptor recognition, each of the variants was tested for its ability to agglutinate periodate-modified chicken erythrocytes. One variant with a single amino acid substitution at residue 193 was 2.5- to 3-fold more resistant to periodate treatment of erythrocytes than the wild-type virus, suggesting that this residue influences the binding of virus to a sialic acid-containing receptor(s) on the cell surface.  相似文献   

6.
Newborn Syrian hamsters were challanged with an intracerebral inoculum containing 128 50% lethal doses of the Kilham strain of mumps virus and treated 24 h later with a single intraperitoneal injection of mouse monoclonal antibody. Monoclonal antibodies reactive with epitopes on the fusion glycoprotein of mumps virus could not inhibit hemagglutination or neutralize infectivity in vitro and failed to provide biologically important protection against the in vivo infection. In contrast, monoclonal antibodies reactive with epitopes on the hemagglutinin-neuraminidase glycoprotein of mumps virus inhibited hemagglutination and neutralized infectivity in vitro and protected infected animals from the otherwise lethal central nervous system virus infection. Similar protection was provided by both purified immunoglobulin and F(ab')2 fragments. Immuno-cytochemical and virological studies showed diminished virus antigen and virus titers in the brains of successfully treated animals. It appears that a topographically restricted region of the hemagglutinin-neuraminidase molecule of the Kilham strain of mumps virus is of critical importance for immune recognition by the infected host.  相似文献   

7.
An unusual feature of human parainfluenza virus type 3 (PIV3) is ita ability to cause reinfection with high efficiency. The antibody responses of 45 humans and 9 rhesus monkeys to primary infection or subsequent reinfection with PIV3 were examined to identify deficiencies in host immunologic responses that might contribute to the ability of the virus to cause reinfection with high frequency. Antibody responses in serum were tested by using neutralization and hemagglutination inhibition (HI) assays and a monoclonal antibody blocking immunoassay able to detect antibodies to epitopes within six antigenic sites on the PIV3 hemagglutinin-neuraminidase (HN) glycoprotein and eight antigenic sites on the fusion (F) protein. Primary infection of seronegative infants or children with PIV3 stimulated strong and rather uniform HI and neutralizing antibody responses. More than 90% of the individuals developed antibodies to four of the six HN antigenic sites (including three of the four neutralization sites), but the responses to F antigenic sites were of lesser magnitude and varied considerably from person to person. Young infants who possessed maternally derived antibodies in their sera developed lower levels and less frequent HI, neutralizing, and antigenic site-specific responses to the HN and F glycoproteins than did seronegative infants and children. In contrast, children reinfected with PIV3 developed even higher HI and neutralizing antibody responses than those observed during primary infection. Reinfection broadened the HN and F antigenic site-specific responses, but the latter remained relatively restricted. Adults possessed lower levels of HI, neutralizing, and antigenic site-specific antibodies in their sera than did children who had been reinfected, suggesting that these antibodies decay with time. Rhesus monkeys developed more vigorous primary and secondary antibody responses than did humans, but even in these highly responsive animals, response to the F glycoprotein was relatively restricted following primary infection. Bovine PIV3 induced a broader response to human PIV3 in monkeys than was anticipated on the basis of their known relatedness as defined by using monoclonal antibodies to human PIV3. These observations suggest that the restricted antibody responses to multiple antigenic sites on the F glycoprotein in young seronegative infants and children and the decreased responses to both the F and HN glycoproteins in young infants and children with maternally derived antibodies may play a role in the susceptibility of human infants and young children to reinfection with PIV3.  相似文献   

8.
Monoclonal antibodies reacting with the A59 strain of mouse hepatitis virus (MHV-A59) were characterized and those specific to the E2 major envelope glycoprotein were studied in detail. Antibodies were tested for their ability to neutralize viral infectivity (N+ characteristic) and prevent viral-induced cell-to-cell fusion (F+ characteristic). All four possible combinations of activities reflecting E2 functions were found, i.e., N+F+, N-F-, N+F-, and N-F+. In addition, competitive binding studies with these monoclonal antibodies revealed two nonoverlapping antigenic regions. The first region, designated A, was recognized by antibodies which included each of the four functional types. Region B was identified by a single monoclonal antibody with N-F- activities. The existence of antibodies which only neutralize virus or only block viral-induced fusion implies that the structures on E2 which serve as targets for neutralization and which induce fusion are not identical. The critical determinants for neutralization and fusion must be closely related topographically on E2 since both N+F- and N-F+ antibodies recognize the same antigenic region.  相似文献   

9.
The persistence of human immunodeficiency virus type 1 (HIV-1) infection in the presence of robust host immunity has been associated in part with variation in viral envelope proteins leading to antigenic variation and escape from neutralizing antibodies. Previous studies of natural neutralization escape mutants have predominantly focused on gp120 and gp41 ectodomain sequence variations that alter antibody binding via changes in conformation or glycosylation pattern of the Env, likely due to the immune pressure exerted on the exposed ectodomain component of the glycoprotein. Here, we show for the first time a novel mechanism by which point mutations in the intracytoplasmic tail of the transmembrane component (gp41) of envelope can render the virus resistant to neutralization by monoclonal antibodies and broadly neutralizing polyclonal serum antibodies. Point mutations in a highly conserved structural motif within the intracytoplasmic tail resulted in decreased binding of neutralizing antibodies to the Env ectodomain, evidently due to allosteric changes both in the gp41 ectodomain and in gp120. While receptor binding and infectivity of the mutant virus remained unaltered, the changes in Env antigenicity were associated with an increase in neutralization resistance of the mutant virus. These studies demonstrate the structurally integrated nature of gp120 and gp41 and underscore a previously unrecognized potentially critical role for even minor sequence variation of the intracytoplasmic tail in modulating the antigenicity of the ectodomain of HIV-1 envelope glycoprotein complex.  相似文献   

10.
Analysis of six monoclonal antibody-resistant (mar) mutants in herpes simplex virus type 1 glycoprotein B identified two type-common (II and III) and two type-specific (I and IV) antigenic sites on this molecule. To derive additional information on the location of these sites, mar mutations were mapped and nucleotide alterations were identified by DNA sequencing. Each mutant carried a single amino acid substitution resulting from a G-to-A base transition. Alterations affecting antibody neutralization were identified at residues 473, 594, 305, and 85 for mutants in sites I through IV, respectively. Two clonally distinct site II antibodies each selected mar mutants (Gly to Arg at residue 594) that exhibited a reduction in the rate of entry (roe) into host cells. A site II mar revertant that regained sensitivity to neutralization by site II antibodies also showed normal entry kinetics. DNA sequencing of this virus identified a single base reversion of the site II mar mutation, resulting in restoration of the wild-type sequence (Arg to Gly). This finding demonstrated that the mar and roe phenotypes were the result of a single mutation. To further define structures that contributed to antibody recognition, monoclonal antibodies specific for all four sites were tested for their ability to immune precipitate a panel of linker-insertion mutant glycoprotein B molecules. Individual polypeptides that contained single insertions of 2 to 28 amino acids throughout the external domain were not recognized or were recognized poorly by antibodies specific for sites II and III, whereas no insertion affected antibody recognition of sites I and IV. mar mutations affecting either site II or III were previously shown to cause temperature-sensitive defects in glycoprotein B glycosylation, and variants altered in both these sites were temperature sensitive for virus production. Taken together, the data indicate that antigenic sites II and III are composed of higher-order structures whose integrity is linked with the ability of glycoprotein B to function in virus infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号