首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In brain, excess zinc alters the metabolism of amyloid precursor protein, leading to ??-amyloid protein deposition, one of the hallmarks of Alzheimer??s disease (AD) pathology. Recently, it has been reported that zinc accelerates in vitro tau fibrillization, another hallmark of AD. In the current study, we examined the effect of high-concentration zinc on tau phosphorylation in human neuroblastoma SH-SY5Y cells. We found that incubation of cells with zinc resulted in abnormal tau phosphorylation at Ser262/356. Moreover, the current study has investigated whether luteolin (Lu), a bioflavonoid, could decrease zinc-induced tau hyperphosphorylation and its underlying mechanisms. Using Western blot and protein phosphatase activity assay, activities of tau kinases and phosphatase were investigated. Our data suggest (1) that zinc induces tau hyperphosphorylation at Ser262/356 epitope and (2) that Lu efficiently attenuates zinc-induced tau hyperphosphorylation through not only its antioxidant action but also its regulation of the phosphorylation/dephosphorylation system.  相似文献   

2.
《Autophagy》2013,9(7):788-789
The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect

in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.  相似文献   

3.
The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.  相似文献   

4.
Both apolipoprotein E (apoE) and zinc are involved in amyloid β (Aβ) aggregation and deposition, in the hallmark neuropathology of Alzheimer’s disease (AD). Recent studies have suggested that interaction of apoE with metal ions may accelerate amyloidogenesis in the brain. Here we examined the impact of apoE deficiency on the histochemically reactive zinc pool in the brains of apoE knockout mice. While there was no change in total contents of metals (zinc, copper, and iron), the level of histochemically reactive zinc (principally synaptic zinc) was significantly reduced in the apoE-deficient brain compared to wild-type. This reduction was accompanied by reduced expressions of the presynaptic zinc transporter, ZnT3, as well as of the δ-subunit of the adaptor protein complex-3 (AP3δ), which is responsible for post-translational stability and activity of ZnT3. In addition, the level of histochemically reactive zinc was also decreased in the cerebrovascular micro-vessels of apoE-deficient mice, the site of cerebral amyloid angiopathy in AD. These results suggest that apoE may affect the cerebral free zinc pool that contributes to AD pathology.  相似文献   

5.
Little is known about the extent to which pathogenic factors drive the development of Alzheimer's disease (AD) at different stages of the long preclinical and clinical phases. Given that the aggregation of the β‐amyloid peptide (Aβ) is an important factor in AD pathogenesis, we asked whether Aβ seeds from brain extracts of mice at different stages of amyloid deposition differ in their biological activity. Specifically, we assessed the effect of age on Aβ seeding activity in two mouse models of cerebral Aβ amyloidosis (APPPS1 and APP23) with different ages of onset and rates of progression of Aβ deposition. Brain extracts from these mice were serially diluted and inoculated into host mice. Strikingly, the seeding activity (seeding dose SD50) in extracts from donor mice of both models reached a plateau relatively early in the amyloidogenic process. When normalized to total brain Aβ, the resulting specific seeding activity sharply peaked at the initial phase of Aβ deposition, which in turn is characterized by a temporary several‐fold increase in the Aβ42/Aβ40 ratio. At all stages, the specific seeding activity of the APPPS1 extract was higher compared to that of APP23 brain extract, consistent with a more important contribution of Aβ42 than Aβ40 to seed activity. Our findings indicate that the Aβ seeding potency is greatest early in the pathogenic cascade and diminishes as Aβ increasingly accumulates in brain. The present results provide experimental support for directing anti‐Aβ therapeutics to the earliest stage of the pathogenic cascade, preferably before the onset of amyloid deposition.  相似文献   

6.
Given that amyloid‐β 42 (Aβ42) is believed to be a culprit in Alzheimer's disease (AD), reducing Aβ42 production should be a potential therapeutic approach. γ‐Secretase modulators (GSMs) cause selective reduction of Aβ42 or both reduction of Aβ42 and Aβ40 without affecting total Aβ through shifting the γ‐cleavage position in amyloid precursor protein. We recently reported on GSM‐2, one of the second‐generation GSMs, that selectively reduced brain Aβ42 level and significantly ameliorated cognitive deficits in plaque‐free 5.5‐month‐old Tg2576 AD model mice. Here, we investigated the effects of GSM‐2 on 10‐, 14‐, and 18‐month‐old mice which had age‐dependent increase in amyloid plaques. Eight‐day treatment with GSM‐2 significantly ameliorated cognitive deficits measured by Y‐maze task in the mice of any age. However, GSM‐2 reduced brain soluble Aβ42 only in 10‐month‐old mice. In contrast, GSM‐2 markedly reduced newly synthesized soluble Aβ42 in both 10‐ and 18‐month‐old mice with similar efficacy when measured using the stable isotope‐labeling technique, suggesting that nascent Aβ42 plays a more significant role than plaque‐associated soluble Aβ42 in the cognitive deterioration of Tg2576 mice. These findings further indicate the potential utility of approach to reducing Aβ42 synthesis in AD therapeutic regimens.  相似文献   

7.
Aluminium (Al) is a neurotoxic metal and Al exposure may be a factor in the aetiology of various neurodegenerative diseases such as Alzheimer's disease (AD). The major pathohistological findings in the AD brain are the presence of neuritic plaques containing beta-amyloid (Abeta) which may interfere with neuronal communication. Moreover, it has been observed that GRP78, a stress-response protein induced by conditions that adversely affect endoplasmic reticulum (ER) function, is reduced in the brain of AD patients. In this study, we investigated the correlation between the expression of Abeta and GRP78 in the brain cortex of mice chronically treated with aluminium sulphate. Chronic exposure over 12 months to aluminium sulphate in drinking water resulted in deposition of Abeta similar to that seen in congophilic amyloid angiopathy (CAA) in humans and a reduction in neuronal expression of GRP78 similar to what has previously been observed in Alzheimer's disease. So, we hypothesise that chronic Al administration is responsible for oxidative cell damage that interferes with ER functions inducing Abeta accumulation and neurodegenerative damage.  相似文献   

8.
Alzheimer’s disease (AD) is characterized by Amyloid-β (Aβ) deposition in senile plaques in specific areas of the brain and by intraneuronal p-tau accumulation in neurofibrillary tangles. Cumulative evidence supports that oxidative stress is an important factor in the pathogenesis of AD and contributes to Aβ generation. However, there is no effective treatment for AD. Human umbilical cord mesenchymal stem cells (HUMSCs) have potential therapeutic value for the treatment of neurological disease. However, the therapeutic impact of systemic administration of HUMSCs and their mechanism of action in AD have not yet been determined. Here, we found that intravenous infusion of HUMSCs significantly improved spatial learning and alleviated memory decline in an AβPP/PS1 mouse model of AD. HUMSC treatment also increased glutathione (GSH) activity and ratio of GSH to oxidative glutathione as well as superoxide dismutase activity, while decreasing malondialdehyde activity and protein carbonyl level, which suggests that HUMSC infusion alleviated oxidative stress in AβPP/PS1 mice. In addition, HUMSC infusion reduced β-secretase 1 and CTFβ, thus reducing Aβ deposition in mice. HUMSCs may have beneficial effects in the prevention and treatment of AD.  相似文献   

9.
Alzheimer's disease (AD) is one of the most common causes of neurodegenerative diseases in the elderly. The accumulation of amyloid‐β (Aβ) peptides is one of the pathological hallmarks of AD and leads to the impairments of synaptic plasticity and cognitive function. The transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel, is involved in synaptic plasticity and memory. However, the role of TRPV1 in AD pathogenesis remains largely elusive. Here, we reported that the expression of TRPV1 was decreased in the brain of APP23/PS45 double transgenic AD model mice. Genetic upregulation of TRPV1 by adeno‐associated virus (AAV) inhibited the APP processing and Aβ deposition in AD model mice. Meanwhile, upregulation of TRPV1 ameliorated the deficits of hippocampal CA1 long‐term potentiation (LTP) and spatial learning and memory through inhibiting GluA2‐containing α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) endocytosis. Furthermore, pharmacological activation of TRPV1 by capsaicin (1 mg/kg, i.p.), an agonist of TRPV1, dramatically reversed the impairments of hippocampal CA1 LTP and spatial learning and memory in AD model mice. Taken together, these results indicate that TRPV1 activation effectively ameliorates cognitive and synaptic functions through inhibiting AMPAR endocytosis in AD model mice and could be a novel molecule for AD treatment.  相似文献   

10.
Jung BK  Pyo KH  Shin KY  Hwang YS  Lim H  Lee SJ  Moon JH  Lee SH  Suh YH  Chai JY  Shin EH 《PloS one》2012,7(3):e33312
Immunosuppression is a characteristic feature of Toxoplasma gondii-infected murine hosts. The present study aimed to determine the effect of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of Alzheimer's disease (AD) in Tg2576 AD mice. Mice were infected with a cyst-forming strain (ME49) of T. gondii, and levels of inflammatory mediators (IFN-γ and nitric oxide), anti-inflammatory cytokines (IL-10 and TGF-β), neuronal damage, and β-amyloid plaque deposition were examined in brain tissues and/or in BV-2 microglial cells. In addition, behavioral tests, including the water maze and Y-maze tests, were performed on T. gondii-infected and uninfected Tg2576 mice. Results revealed that whereas the level of IFN-γ was unchanged, the levels of anti-inflammatory cytokines were significantly higher in T. gondii-infected mice than in uninfected mice, and in BV-2 cells treated with T. gondii lysate antigen. Furthermore, nitrite production from primary cultured brain microglial cells and BV-2 cells was reduced by the addition of T. gondii lysate antigen (TLA), and β-amyloid plaque deposition in the cortex and hippocampus of Tg2576 mouse brains was remarkably lower in T. gondii-infected AD mice than in uninfected controls. In addition, water maze and Y-maze test results revealed retarded cognitive capacities in uninfected mice as compared with infected mice. These findings demonstrate the favorable effects of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of AD in Tg2576 mice.  相似文献   

11.
Iron homeostasis disturbance has been implicated in Alzheimer’s disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of ferroptosis in the pathogenesis of AD remains elusive. Here, we report that ferroportin1 (Fpn), the only identified mammalian nonheme iron exporter, was downregulated in the brains of APPswe/PS1dE9 mice as an Alzheimer’s mouse model and Alzheimer’s patients. Genetic deletion of Fpn in principal neurons of the neocortex and hippocampus by breeding Fpnfl/fl mice with NEX-Cre mice led to AD-like hippocampal atrophy and memory deficits. Interestingly, the canonical morphological and molecular characteristics of ferroptosis were observed in both Fpnfl/fl/NEXcre and AD mice. Gene set enrichment analysis (GSEA) of ferroptosis-related RNA-seq data showed that the differentially expressed genes were highly enriched in gene sets associated with AD. Furthermore, administration of specific inhibitors of ferroptosis effectively reduced the neuronal death and memory impairments induced by Aβ aggregation in vitro and in vivo. In addition, restoring Fpn ameliorated ferroptosis and memory impairment in APPswe/PS1dE9 mice. Our study demonstrates the critical role of Fpn and ferroptosis in the progression of AD, thus provides promising therapeutic approaches for this disease.Subject terms: Neural ageing, Ageing  相似文献   

12.
Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD. In the current study, aged SAMP8 were treated by AO directed against PS-1, a component of the γ-secretase complex, and tested for learning and memory in T-maze foot shock avoidance and novel object recognition. Brain tissue was collected to identify the decrease of oxidative stress and to evaluate the proteins that are differently expressed and oxidized after the reduction in free radical levels induced by Aβ. We used both expression proteomics and redox proteomics approaches. In brain of AO-treated mice a decrease of oxidative stress markers was found, and the proteins identified by proteomics as expressed differently or nitrated are involved in processes known to be impaired in AD. Our results suggest that the treatment with AO directed against PS-1 in old SAMP8 mice reverses learning and memory deficits and reduces Aβ-mediated oxidative stress with restoration to the normal condition and identifies possible pharmacological targets to combat this devastating dementing disease.  相似文献   

13.
14.
The activation of the NLRP3 inflammasome signaling pathway plays an important role in the neuroinflammation in Alzheimer’s disease (AD). In this study, we investigated the effects of JC-124, a rationally designed NLRP3 inflammasome inhibitor, on AD-related deficits in CRND8 APP transgenic mice (TgCRND8). We first demonstrated increased formation and activation of NLRP3 inflammasome in TgCRND8 mice compared to non-transgenic littermate controls, which was inhibited by the treatment with JC-124. Importantly, JC-124 treatment led to decreased levels of Aβ deposition and decreased levels of soluble and insoluble Aβ1–42 in the brain of CRND8 mice which was accompanied by reduced β-cleavage of APP, reduced activation of microglia but enhanced astrocytosis. Oxidative stress was decreased and synaptophysin was increased in the CRND8 mice after JC-124 treatment, demonstrating a neuroprotective effect. Overall, these data demonstrated beneficial effects of JC-124 as a specific NLRP3 inflammasome inhibitor in AD mouse model and supported the further development of NLRP3 inflammasome inhibitors as a viable option for AD therapeutics.  相似文献   

15.
Amyloid-beta peptide (Aβ)-directed active and passive immunization therapeutic strategies reduce brain levels of Aβ, decrease the severity of beta-amyloid plaque pathology and reverse cognitive deficits in mouse models of Alzheimer's disease (AD). As an alternative approach to passive immunization with full IgG molecules, single-chain variable fragment (scFv) antibodies can modulate or neutralize Aβ-related neurotoxicity and inhibit its aggregation in vitro. In this study, we characterized a scFv derived from a full IgG antibody raised against the C-terminus of Aβ, and studied its passage into the brains of APP transgenic mice, as well as its potential to reduce Aβ-related pathology. We found that the scFv entered the brain after intranasal application, and that it bound to beta-amyloid plaques in the cortex and hippocampus of APP transgenic mice. Moreover, the scFv inhibited Aβ fibril formation and Aβ-mediated neurotoxicity in vitro. In a preventative therapeutic approach chronic intranasal treatment with scFv reduced congophilic amyloid angiopathy (CAA) and beta-amyloid plaque numbers in the cortex of APPswe/PS1dE9 mice. This reduction of CAA and plaque pathology was associated with a redistribution of brain Aβ from the insoluble fraction to the soluble peptide pool. Due to their lack of the effector domain of full IgG, scFv may represent an alternative tool for the treatment of Aβ-related pathology without triggering Fc-mediated effector functions. Additionally, our observations support the possibility that Aβ-directed immunotherapy can reduce Aβ deposition in brain vessels in transgenic mice.  相似文献   

16.
Oxidative damage can lead to neuronal dysfunction in the brain due to modifications to proteins, lipids and DNA/RNA. In both human and canine brain, oxidative damage progressively increases with age. In the Alzheimer's disease (AD) brain, oxidative damage is further exacerbated, possibly due to increased deposition of beta-amyloid (Aβ) peptide in senile plaques. These observations have led to the hypothesis that antioxidants may be beneficial for brain aging and AD. Aged dogs naturally develop AD-like neuropathology (Aβ) and cognitive dysfunction and are a useful animal model in which to test antioxidants. In a longitudinal study of aging beagles, a diet rich in antioxidants improved cognition, maintained cognition and reduced oxidative damage and Aβ pathology in treated animals. These data suggest that antioxidants may be beneficial for human brain aging and for AD, particularly as a preventative intervention. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

17.
Rapamycin, an inhibitor of target‐of‐rapamycin, extends lifespan in mice, possibly by delaying aging. We recently showed that rapamycin halts the progression of Alzheimer's (AD)‐like deficits, reduces amyloid‐beta (Aβ) and induces autophagy in the human amyloid precursor protein (PDAPP) mouse model. To delineate the mechanisms by which chronic rapamycin delays AD we determined proteomic signatures in brains of control‐ and rapamycin‐treated PDAPP mice. Proteins with reported chaperone‐like activity were overrepresented among proteins up‐regulated in rapamycin‐fed PDAPP mice and the master regulator of the heat‐shock response, heat‐shock factor 1, was activated. This was accompanied by the up‐regulation of classical chaperones/heat shock proteins (HSPs) in brains of rapamycin‐fed PDAPP mice. The abundance of most HSP mRNAs except for alpha B‐crystallin, however, was unchanged, and the cap‐dependent translation inhibitor 4E‐BP was active, suggesting that increased expression of HSPs and proteins with chaperone activity may result from preferential translation of pre‐existing mRNAs as a consequence of inhibition of cap‐dependent translation. The effects of rapamycin on the reduction of Aβ, up‐regulation of chaperones, and amelioration of AD‐like cognitive deficits were recapitulated by transgenic over‐expression of heat‐shock factor 1 in PDAPP mice. These results suggest that, in addition to inducing autophagy, rapamycin preserves proteostasis by increasing chaperones. We propose that the failure of proteostasis associated with aging may be a key event enabling AD, and that chronic inhibition of target‐of‐rapamycin may delay AD by maintaining proteostasis in brain. Read the Editorial Highlight for this article on doi: 10.1111/jnc.12098 .  相似文献   

18.
Zhang W  Bai M  Xi Y  Hao J  Liu L  Mao N  Su C  Miao J  Li Z 《Free radical biology & medicine》2012,52(8):1443-1452
A large body of evidence has shown that cognitive deficits occur early, before amyloid plaque deposition, suggesting that soluble amyloid-β protein (Aβ) contributes to the development of early cognitive dysfunction in Alzheimer disease (AD). However, the underlying mechanism(s) through which soluble Aβ exerts its neurotoxicity responsible for cognitive dysfunction in the early stage of AD remains unclear so far. In this study, we used preplaque APPswe/PS1dE9 mice ages 2.5 and 3.5 months to examine alterations in cognitive function, oxidative stress, and cholinergic function. We found that only soluble Aβ, not insoluble Aβ, was detected in these preplaque APPswe/PS1dE9 mice. APPswe/PS1dE9 mice 2.5 months of age did not show any significant changes in the measures of cognitive function, oxidative stress, and cholinergic function, whereas 3.5-month-old APPswe/PS1dE9 mice exhibited spatial memory impairment in the Morris water maze, accompanied by significantly decreased acetylcholine (ACh), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) as well as increased malondialdehyde (MDA) and protein carbonyls. In 3.5-month-old preplaque APPswe/PS1dE9 mice, correlational analyses revealed that the performance of impaired spatial memory was inversely correlated with soluble Aβ, MDA, and protein carbonyls, as well as being positively correlated with ACh, ChAT, SOD, and GSH-px; soluble Aβ level was inversely correlated with ACh, ChAT, SOD, and GSH-px, as well as being positively correlated with MDA and protein carbonyls; ACh level showed a significant positive correlation with ChAT, SOD, and GSH-px, as well as a significant inverse correlation with MDA and protein carbonyls. Collectively, this study provides direct evidence that increased oxidative damage and cholinergic dysfunction may be early pathological responses to soluble Aβ and involved in early memory deficits in the preplaque stage of AD. These findings suggest that early antioxidant therapy and improving cholinergic function may be a promising strategy to prevent or delay the onset and progression of AD.  相似文献   

19.
The absence of the p62 gene in mouse brain leads to biochemical and cognitive deficits that resemble Alzheimer disease (AD). In this context, the objective of this study was to examine the relationship between age-induced oxidative damage to the p62 promoter and AD. Increased 8-OHdG staining, a marker of oxidative stress, was observed in brain sections from mice deficient in the p62 gene compared to control. Treatment of MEF cells deficient in p62 with H2O2 resulted in decreased cell survival and an absence of Nrf2 nuclear translocation. The mouse p62 promoter exhibited elevated oxidative damage with increasing age, and the degree of p62 promoter damage was also age-correlated in human brain samples. In human subjects, the expression of p62 was decreased in AD brain relative to age-matched controls, and likewise decreased p62 expression correlated with oxidative damage to the promoter. Treatment of HEK cells with H2O2 resulted in decreased p62 expression concomitant with increased promoter damage. Consistent with these findings, a transgenic AD mouse model also exhibited increased p62 promoter damage and reduced p62 levels in brain. Altogether, our results reveal that oxidative damage to the p62 promoter correlates with decreased expression of p62 and may contribute to age-associated neurodegenerative disease such as AD and others.  相似文献   

20.
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号