首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pitch canker, caused by the pathogen Fusarium circinatum, is a serious disease of pines, Pinus species. It is a threat to natural and planted pine forests, and to date it has invaded countries across five continents. Pine-feeding insects can play a key role in the epidemiology of the disease, as wounding agents allowing pathogen access or as vectors transmitting the pathogen from infected to healthy trees. We reviewed the role of insects in the epidemiology of pitch canker worldwide and assessed which insects are present in New Zealand that may act as wounding agents or vectors to determine whether pathogen invasion could adversely affect Pinus radiata plantation forests and urban trees. We also evaluated whether cone or seed insects of pines could be introduced as biological control agents of invasive Pinus contorta and how this may affect the impact of a potential F. circinatum invasion. As there are no native pines or other Pinaceae in New Zealand, there are only a few pine insects, mainly accidental introductions. None of the insects recorded on pines in New Zealand is likely to be a vector, suggesting low disease risk. Of six potentially suitable biocontrol candidates, the European pine cone weevil Pissodes validirostris is the most promising regarding host specificity and impact on seed production, but there is uncertainty about its ability to act as a vector of F. circinatum. Our methodology to review and evaluate the vector potential of pine associates can be used as a generic framework to assess the potential impacts of F. circinatum invasion.  相似文献   

2.
Non-native Spartina spp. have invaded many coastal saltmarshes worldwide. Introduced Spartina may cause problems like displacement of native vegetation and hybridisation with native species, leading to changes to relevant ecosystem services and saltmarsh geomorphology. Here we report the extensive and so far overlooked replacement of the native Spartina maritima by non-native S. anglica and S. townsendii along 400 km of the coast of the north-western Adriatic Sea (Mediterranean Sea). We analysed the distribution of both native and non-native Spartina spp. along the six main saltmarsh areas in the region, and produced maps of their presence by using a combination of genetic tools, morphological analysis and geotagged photographs, complemented with field observations. We also reviewed historical herbaria from the region to explore when the first non-native introductions could have occured. We found that S. anglica and S. townsendii are unexpectedly widespread, having established along the whole study region, in one lagoon totally replacing the local native species. Its introduction happened virtually unnoticed, and misidentified herbarium specimens date back as early as 1987. We discuss the ecological implications of this overlooked extensive replacement, and the need for a comprehensive assessment of the status of the saltmarshes in this region, both to protect the few remaining patches of the native S. maritima and control the spread of the non-native species across the Mediterranean Sea.  相似文献   

3.
We studied the invasive warty cabbage Bunias orientalis (Brassicaceae) in three geographically distinct areas. Using inter-simple sequence repeat fingerprinting, we analyzed warty cabbages, including non-native populations, from the eastern Baltic and western Siberian regions and native populations from southwestern Russia. The eastern Baltic region and western Siberia represent the two opposite directions of B. orientalis spread in climatically different zones. The genetic structures of the native and non-native B. orientalis populations were assessed through analysis of molecular variance (AMOVA) and the Bayesian clustering method and by determining the main measures of genetic diversity. AMOVA revealed considerable population differentiation in both the native and invasive ranges. Our results did not indicate a decrease in genetic diversity in the non-native populations of B. orientalis. Similar measures of genetic diversity and genetic structure were determined in the invasive populations in two geographically and ecologically distinct, non-native regions located in Europe and Asia. In both of these regions, higher genetic diversity was detected in the non-native populations than in the native region populations, which may be due to multiple introductions. However, Bayesian clustering analysis revealed slightly different sources of invasive populations in the two non-native regions. Genetic diversity patterns revealed the lack of isolation by distance between populations and confirmed the influence of anthropogenic factors on the spread of B. orientalis. The significance of native populations as germplasm resources for breeding is discussed.  相似文献   

4.
Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.  相似文献   

5.
Structural and nutritional plant traits influence the ability of insect herbivores to locate, consume and persist on their hosts yet it is uncommon for ecologists to consider how multiple plant traits influence insect community composition. We sampled herbivorous insects on two understorey shrub species common to eucalypt forests of south-eastern Australia, namely Cassinia arcuata (Asteraceae) and Daviesia ulicifolia (Fabaceae). Regression analyses were used to assess the relative influence of plant structure (canopy volume), nutritional quality (macronutrients and total phenolics) and plant productivity (leaf litter) on insect abundance and species richness. Total N content of D. ulicifolia was significantly higher than C. arcuata, while the concentrations of P, K, Ca and Mg were higher in C. arcuata. Total phenolics and leaf litter were significantly lower in D. ulicifolia compared to C. arcuata. Insect composition was similar between the two shrubs but C. arcuata supported greater abundances. Canopy volume and the macronutrients P and Ca were important predictors of insect abundance on C. arcuata, whereas canopy volume alone, but neither plant productivity nor macronutrients, influenced the abundance of insects on D. ulicifolia. Ca was an important predictor of insect species richness on C. arcuata and P was an important predictor on D. ulicifolia. By quantifying a range of plant traits, we have provided an understanding of factors likely to influence the composition of herbivorous insects inhabiting these two shrubs. Traits including leaf architecture, foliar morphology and volatile terpenoids may yet explain the greater number of insects on C. arcuata since they influence the availability of microhabitats and apparency of host plants.  相似文献   

6.
During a study comparing the ectomycorrhizal root communities in a native forest with those at the Arnold Arboretum in Massachusetts (USA), the European species Tuber borchii was detected on the roots of a native red oak in the arboretum over two successive years. Since T. borchii is an economically important edible truffle native to Europe, we conducted a search of other roots in the arboretum to determine the extent of colonization. We also wanted to determine whether other non-native Tuber species had been inadvertently introduced into this 140-year-old Arboretum because many trees were imported into the site with intact soil and roots prior to the 1921 USDA ban on these horticultural practices in the USA. While T. borchii was not found on other trees, seven other native and exotic Tuber species were detected. Among the North American Tuber species detected from ectomycorrhizae, we also collected ascomata of a previously unknown species described here as Tuber arnoldianum. This new species was found colonizing both native and non-native tree roots. Other ectomycorrhizal taxa that were detected included basidiomycetes in the genera Amanita, Russula, Tomentella, and ascomycetes belonging to Pachyphlodes, Helvella, Genea, and Trichophaea. We clarify the phylogenetic relationships of each of the Tuber species detected in this study, and we discuss their distribution on both native and non-native host trees.  相似文献   

7.
York gum (Eucalyptus loxophleba Benth) is widely planted in semi-arid regions of Australia for the production of Eucalyptus oil, a mixture of terpenes dominated by the monoterpene 1,8-cineole. Increasing oil yield in this species would improve the profitability of this crop and enhance its use in sustainable land management systems in Australia. To this end, we sequenced ten structural genes in the terpene biosynthetic pathway of ~400 individuals of E. loxophleba. Of the 4353 allelic variants identified, 1347 had a minor allele frequency >0.01. These were associated with three key traits of essential oil yield (concentration of 1,8-cineole, α-pinene and total terpenes). Three variants associated with α-pinene, two with 1,8-cineole and eight with total terpenes (13 total). The variants were mostly located in introns of the final three biosynthetic steps of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway (mcs, hds and hdr). Effect size varied from 2.7 to 6.8%, comparable to similar studies in forest trees. The cumulative effect size of the unlinked variants was 34.8% for total terpenes, although this is likely to be a high estimate. These results provide the basis for the development of molecular breeding methods for improving essential oil yield in this industrially important species.  相似文献   

8.
The introduction and establishment of non-native plant pathogens into new areas can result in severe outbreaks. Septoria leaf spot and canker caused by Sphaerulina musiva is one of the most damaging poplar diseases in northeastern and north-central North America. Stem and branch cankers can be devastating on susceptible trees, leading to tree death and reduced biomass in commercial plantations. In the Pacific Northwest region of North America, the first report of the disease was made in 2006 in the Fraser Valley of British Columbia (BC), Canada. To investigate the incidence and distribution of S. musiva from its point of introduction into BC, five plantations of Populus trichocarpa (black cottonwood), 500 P. trichocarpa trees from natural populations, and 23 plantations of hybrid poplars were surveyed by using real-time PCR assays targeting S. musiva and its native sister species, S. populicola. Our survey suggests a strong anthropogenic signature to the emergence of the non-native S. musiva. Detection frequency of S. musiva was high in hybrid poplar plantations (116 trees infected, 54.2 % of the sampled trees), while detection of the native S. populicola was limited to 13.1 % (22 trees infected). By contrast, in natural stands of P. trichocarpa, less than 2 % of the trees were positive for S. musiva (7 trees) while ~75 % were positive for S. populicola (433 trees). All the S. musiva detections in natural stands of the native P. trichocarpa were from trees located in the vicinity (<2.5 km) of hybrid poplar plantations. Identification of the genotypes found in the hybrid poplar plantations revealed that they are in majority F1 progeny from P. trichocarpa × P. deltoides (T × D) (82 %) and P. nigra × P. maximowiczii (N × M) (7.8 %) crosses, which are generally susceptible (intermediate level of susceptibility between the two parental species) to the canker disease. Our results suggest that the emergence of S. musiva in BC is related to the planting of susceptible hybrid poplars. Even if the disease has not yet established itself in natural poplar populations outside of the Fraser Valley, infected plantations could act as a reservoir that could promote its spread into nearby native P. trichocarpa populations.  相似文献   

9.
Spread of smooth cordgrass (Spartina alterniflora) in China is an exceptional example of unanticipated outcomes arising from intentional introductions. It has been proposed that in China, management strategies used to establish S. alterniflora inadvertently promoted evolutionary outcomes that have contributed to other Spartina invasions. In this study, we assessed whether S. alterniflora in China exhibits genetic signatures of mechanisms known to promote invasion success, including large founding populations, evolved self-fertility, ‘superior source ecotypes’, and post-introduction admixture. This involved comparing microsatellite genotype and chloroplast haplotype variation among Chinese populations to other invasive S. alterniflora populations as well as native range populations, inclusive of samples from all reported source areas. We found distinct signatures of source population contributions to Chinese populations, as well as evidence of post-introduction admixture, and no evidence of limitations from a genetic bottleneck. Measures of inbreeding were well below what has been found in other non-native populations that have evolved self-fertility. Differences in genetic diversity among sites were similar to latitudinal patterns in the native range, but could be attributable to introduction history. Comparisons to other invasive populations indicate that a combination of common and idiosyncratic processes have contributed to the success of S. alterniflora in China and elsewhere, with intentional introductions promoting mechanisms that accelerate rates of spread and widespread invasion.  相似文献   

10.
Myrmecochorous plants produce seeds with lipid-rich appendages (elaiosomes) which act as a reward for seed-dispersing ants. Seed dispersal is important for exotic species, which often need to establish new mutualistic interactions in order to colonize new non-native habitats. However, little is known about the importance of elaiosomes for seed removal in many of their non-native ranges. We studied ant–seed interactions of elaiosome-bearing and elaiosome-removed seeds of the Australian trees Acacia dealbata and Acacia longifolia in order to assess the relative importance of elaiosomes for seed removal between their native (Australia) and non-native (Portugal) ranges. In Portugal, we also studied the co-occurring native plant species with myrmecochorous seeds, Pterospartum tridentatum and Ulex europaeus, across three contiguous levels of acacia invasion: control (i.e. no acacia), low, and high acacia tree density. Acacia seeds were successfully removed by ants in their non-native region by a diversified assemblage of ant species, even in sites where native plants interacted with only one specialized ant species. In the invaded range, diminishing relative importance of elaiosomes was associated with changes in the ant community due to acacia invasion, and for A. dealbata, ant species richness decreased with increasing acacia tree density. Although seed removal was high for both acacia species, the importance of elaiosomes was proportionally lower for A. dealbata in the non-native region. Native plant species experienced significant reductions in seed removal in areas highly invaded by acacia, identifying another mechanism of displacement of native plants by acacias.  相似文献   

11.
Plant–microbial feedbacks are important drivers of plant community structure and dynamics. These feedbacks are driven by the variable modification of soil microbial communities by different plant species. However, other factors besides plant species can influence soil communities and potentially interact with plant–microbial feedbacks. We tested for plant–microbial feedbacks in two Eucalyptus species, E. globulus and E. obliqua, and the influence of forest fire on these feedbacks. We collected soils from beneath mature trees of both species within native forest stands on the Forestier Peninsula, Tasmania, Australia, that had or had not been burnt by a recent forest fire. These soils were subsequently used to inoculate seedlings of both species in a glasshouse experiment. We hypothesized that (i) eucalypt seedlings would respond differently to inoculation with conspecific versus heterospecific soils (i.e., exhibit plant–microbial feedbacks) and (ii) these feedbacks would be removed by forest fire. For each species, linear mixed effects models tested for differences in seedling survival and biomass in response to inoculation with conspecific versus heterospecific soils that had been collected from either unburnt or burnt stands. Eucalyptus globulus displayed a response consistent with a positive plant–microbial feedback, where seedlings performed better when inoculated with conspecific versus heterospecific soils. However, this effect was only present when seedlings were inoculated with unburnt soils, suggesting that fire removed the positive effect of E. globulus inoculum. These findings show that external environmental factors can interact with plant–microbial feedbacks, with possible implications for plant community structure and dynamics.  相似文献   

12.
When non-native, genetically diverse species are introduced, hybridization with native congeners may erode the genetic composition of local species, perhaps even resulting in extinction. While such events may lead to adverse consequences at the community and ecosystem level, few studies exist on ecologically important tree species. In the genus Platanus, introgressive hybridization is widespread, and one common ornamental species, introduced to California during the late 19th century, is itself a hybrid. Our microsatellite analysis of more than 400 Platanus trees from north-central California reveals a complex pattern of invasion and hybridization in an age-structured population. By using size as a proxy for age, we have demonstrated that the Platanus population of north-central California has recently gained genetic diversity and effective population size. Principal coordinate analysis (PCoA) and genetic admixture analysis (STRUCTURE) both reveal a strong differentiation of genotypes into two main genetic clusters, with a large number of admixed genotypes. One of the genetic clusters identified is heavily biased towards younger trees, including samples from locations with relatively recently planted ornamental trees likely to be P. × hispanica (formerly known as P. × acerifolia). We conclude that the two genetic clusters correspond to the native P. racemosa and the introduced invasive hybrid species P. × hispanica. Additional hybridization between the invasive ornamental and the native species has occurred in California, and recent hybrid trees are more likely to be younger than trees without admixture. Our findings suggest that the observed increase in genetic diversity among California Platanus is due to rampant ongoing introgression, which may be threatening the continued genetic distinctiveness of the native species. This is cause for concern from a conservation standpoint, due to a direct loss of genetic distinctiveness, and a potential reduction in habitat value of associated species.  相似文献   

13.
14.
Ceratocystis wilt caused by the fungus Ceratocystis fimbriata, is currently one of the major diseases in commercial plantations of Eucalyptus trees in Brazil. Deployment of resistant genotypes has been the main strategy for effective disease management. The present study aimed at identifying genomic regions underlying the genetic control of resistance to Ceratocystis wilt in Eucalyptus by quantitative trait loci (QTL) mapping in an outbred hybrid progeny derived from a cross between (Eucalyptus dunnii × Eucalyptus grandis) × (Eucalyptus urophylla × Eucalyptus globulus). A segregating population of 127 individuals was phenotyped for resistance to Ceratocystis wilt using controlled inoculation under a completely randomized design with five clonal replicates per individual plant. The phenotypic resistance response followed a continuous variation, enabling us to analyze the trait in a quantitative manner. The population was genotyped with 114 microsatellite markers and 110 were mapped with an average interval of 12.3 cM. Using a sib-pair interval-mapping approach five QTLs were identified for disease resistance, located on linkage groups 1, 3, 5, 8, and 10, and their estimated individual heritability ranged from 0.096 to 0.342. The QTL on linkage group 3 overlaps with other fungal disease-resistance QTLs mapped earlier and is consistent with the annotation of several disease-resistance genes on this chromosome in the E. grandis genome. This is the first study to identify and attempt to quantify the effects of QTLs associated with resistance to Ceratocystis wilt in Eucalyptus.  相似文献   

15.
Elm trees are important landscape trees and sucking insects weaken the elm trees and produce large amounts of honeydew. The main objectives of this study were to identify main honeydew-producing pests of elm trees and do site-specific spraying against these pests. To map the spatial distribution of the sucking pests in the large scale, the study area was divided into 40?×?40 m grids and one tree was chosen randomly from each grid (a total of 55 trees). These trees were sampled twice a year in 2011 and 2012. Each sample was a 30-cm branch terminal. Eight samples were taken from each tree in four cardinal directions and two canopy levels. The number of sucking insects and leaves of each sample were counted and recorded. Spatial analysis of the data was carried out using geostatistics. Kriging was used for producing prediction maps. Insecticide application was restricted to the regions with populations higher than threshold. To identify within-tree distribution of the honeydew-producing pests, six and four elm trees were chosen in 2011 and 2012 respectively, and sampled weekly. These trees were sampled as described previously. European elm scale (EES), Gossyparia spuria (Modeer) and two species of aphids were the dominant honeydew-producing pests. The results revealed that the effects of direction, canopy level and their interactions on insect populations were not statistically significant (P?<?0.05). Site-specific spraying decreased the amount of insecticides used by ca. 20%, while satisfactory control of the sucking pests and honeydew excretion was obtained. Considering the environmental and economic benefits of site-specific spraying, it is worth doing more complementary works in this area.  相似文献   

16.
The island of St Helena in the South Atlantic Ocean has a rich endemic flora, with 10 endemic genera and 45 recognised endemic species. However, populations of most endemic species have undergone dramatic reductions or extinction due to over-exploitation, habitat destruction and competition from invasive species. Consequently, endemic species are likely to have lost genetic variation, in some cases to extreme degrees. Here, the entire extant wild populations and all planted trees in seed orchards, of two critically endangered species in the endemic genus Commidendrum (Asteraceae), C. rotundifolium and C. spurium, were sampled to assess levels of genetic variation and inbreeding. Six new microsatellite loci were developed from next-generation sequence data, and a total of 190 samples were genotyped. Some seed orchard trees contained alleles from both wild C. rotundifolium and C. spurium indicating they could be hybrids and that some backcrossing may have occurred. Some of these trees were more similar to C. rotundifolium than C. spurium both genetically and morphologically. Importantly, allelic variation was detected in the putative hybrids that was not present in wild material. C. rotundifolium is represented by just two individuals one wild and one planted and C. spurium by seven, therefore the seed orchard trees comprise an important part of the total remaining genetic diversity in the genus Commidendrum.  相似文献   

17.
Elucidating the invasion history of non-native species has been dependent on coarse-grain and expensive methods or long-term monitoring during which the spread may have proceeded beyond feasible control. We used the case of a relatively recent introduction and spread of the neotropical Cecropia pachystachya in Singapore to develop a method for reconstructing spatio-temporal patterns of spread through a low-cost, cross-sectional study. Size and growth rates were measured for C. pachystachya trees as well as the native Macaranga gigantea. A power-expansion exponential-decline function was a better fit than the probability density function of the log-normal distribution in describing the growth-rate to size relationship for both species. C. pachystachya trees generally grew faster (up to 5.4 ± 0.1 cm per year at 12.2 ± 0.2 cm DBH) than M. gigantea trees (up to 3.8 ± 0.2 cm per year at 11.5 ± 0.3 cm DBH). We demonstrated that the integral of the reciprocal of these growth equations provides an estimate of the age of the individuals from their size. Using the size and geographic coordinates of C. pachystachya trees from an island-wide search, we estimate that the invasion front of reproductive trees (>5 cm DBH) showed at least a 20-year lag phase from the time of initial establishment to the year 2005, before advancing exponentially at median rates between 5 and 466 m year?1 with maximum rates of several km year?1. The extent of occurrence expanded by nearly tenfold from 2004 to 2012. Consequently, the spatial dynamics of trees can be reproduced using ontogenetic growth functions.  相似文献   

18.
19.
In this review, we describe the history, pathways and vectors of the biological invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world. In order to do so we consulted previous reports in the literature and also compiled new unpublished information on the distribution of the three species of Tubastraea which have been reported as non indigenous species, both within their native and non-native ranges and also on vectors, and where cryptogenic. We combine these data with historical aspects of marine vectors in order to get insights into how Tubastraea species have successfully spread around the world, established and invaded and where future studies would be best focused. T. coccinea and T. tagusensis are recognized as being highly invasive and are causing significant environmental, economic, and social impacts requiring management actions. The third species, T. micranthus so far only reported outside its native range on oil platforms, may have similar potential for negative impact. The vectors of introduction of Tubastraea may have changed throughout history and the biological invasion of these invasive corals may reflect changing practices, demands and legislation in shipping activities over the years. Today it is clear that these corals are fouling organisms strongly associated with oil and gas platforms worldwide which are thus primary vectors for new introductions.  相似文献   

20.
Insecticides based on crystalline toxins of Bacillus thuringiensis are very good biological plant protection products. However, the spectrum of activity of some toxins is narrow or resistance among insects has been developed. We tested the insecticidal activity of crystals of the B. thuringiensis MPU B9 strain alone and supplemented with Vip3Aa proteins against important pests: Spodoptera exigua Hübner (Lepidoptera: Noctuidae), Cydia pomonella L. (Lepidoptera: Tortricidae) and Dendrolimus pini L. (Lepidoptera: Lasiocampidae). The Cry toxins were more active for D. pini but less active against S. exigua and C. pomonella than Vip3Aa. Supplementation of Cry toxins by small amounts of vegetative insecticidal proteins demonstrated synergistic effect and significantly enhanced the toxicity of the insecticide. The results indicate the utility of Cry and Vip3Aa toxins mixtures to control populations of crops and forests insect pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号