首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 434 毫秒
1.
The solution structure of the 154-residue conserved hypothetical protein HI0004 has been determined using multidimensional heteronuclear NMR spectroscopy. HI0004 has sequence homologs in many organisms ranging from bacteria to humans and is believed to be essential in Haemophilus influenzae, although an exact function has yet to be defined. It has a alpha-beta-alpha sandwich architecture consisting of a central four-stranded beta-sheet with the alpha2-helix packed against one side of the beta-sheet and four alpha-helices (alpha1, alpha3, alpha4, alpha5) on the other side. There is structural homology with the eukaryotic matrix metalloproteases (MMPs), but little sequence similarity except for a conserved region containing three histidines that appears in both the MMPs and throughout the HI0004 family of proteins. The solution structure of HI0004 is compared with the X-ray structure of an Aquifex aeolicus homolog, AQ_1354, which has 36% sequence identity over 148 residues. Despite this level of sequence homology, significant differences exist between the two structures. These differences are described along with possible functional implications of the structures.  相似文献   

2.
Recently, the solution structure of the hypothetical protein HI1450 from Haemophilus influenzae was solved as part of a structure-based effort to understand function. The distribution of its many negatively charged residues and weak structure and sequence homology to uracil DNA glycosylase inhibitor (Ugi) suggested that HI1450 may act as a double-stranded DNA (dsDNA) mimic. We present supporting evidence here and show that HI1450 interacts with the dsDNA-binding protein HU-alpha. The interaction between HI1450 and HU-alpha from H. influenzae is characterized using calorimetry and NMR spectroscopy. HU-alpha binds to HI1450 with a K(d) of 3.0 +/- 0.2 microM, which is similar in affinity to its interaction with dsDNA. Chemical shift perturbation data indicate that the beta1-strand of HI1450 and neighboring regions are most directly involved in interactions with HU-alpha. These results show that HI1450 and its structural homolog, Ugi, use similar parts of their structures to recognize DNA-binding proteins.  相似文献   

3.
The crystal structure of HI0074 from Haemophilus influenzae, a protein of unknown function, has been determined at a resolution of 2.4 A. The molecules form an up-down, four-helix bundle, and associate into homodimers. The fold is most closely related to the substrate-binding domain of KNTase, yet the amino acid sequences of the two proteins exhibit no significant homology. Sequence analyses of completely and incompletely sequenced genomes reveal that the two adjacent genes, HI0074 and HI0073, and their close relatives comprise a new family of nucleotidyltransferases, with 15 members at the time of writing. The analyses also indicate that this is one of eight families of a large nucleotidyltransferase superfamily, whose members were identified based on the proximity of the nucleotide- and substrate-binding domains on the respective genomes. Both HI0073 and HI0074 were annotated "hypothetical" in the original genome sequencing publication. HI0073 was cloned, expressed, and purified, and was shown to form a complex with HI0074 by polyacrylamide gel electrophoresis under nondenaturing conditions, analytic size exclusion chromatography, and dynamic light scattering. Double- and single-stranded DNA binding assays showed no evidence of DNA binding to HI0074 or to HI0073/HI0074 complex despite the suggestive shape of the putative binding cleft formed by the HI0074 dimer.  相似文献   

4.
Parsons LM  Yeh DC  Orban J 《Proteins》2004,54(3):375-383
The solution structure of the acidic protein HI1450 from Haemophilus influenzae has been determined by NMR spectroscopy. HI1450 has homologues in ten other bacterial species including Escherichia coli, Vibrio cholerae, and Yersinia pestis but there are no functional assignments for any members of the family. Thirty-one of the amino acids in this 107-residue protein are aspartates or glutamates, contributing to an unusually low pI of 3.72. The secondary structure elements are arranged in an alpha-alpha-beta-beta-beta-beta order with the two alpha helices packed against the same side of an anti-parallel four-stranded beta meander. Two large loops, one between beta1 and beta2 and the other between beta2 and beta3 bend almost perpendicularly across the beta-strands in opposite directions on the non-helical side of the beta-sheet to form a conserved hydrophobic cavity. The HI1450 structure has some similarities to the structure of the double-stranded DNA (dsDNA) mimic uracil DNA glycosylase inhibitor (Ugi) including the distribution of surface charges and the position of the hydrophobic cavity. Based on these similarities, as well as having a comparable molecular surface to dsDNA, we propose that HI1450 may function as a dsDNA mimic in order to inhibit or regulate an as yet unidentified dsDNA binding protein.  相似文献   

5.
TT1426, from Thermus thermophilus HB8, is a conserved hypothetical protein with a predicted phosphoribosyltransferase (PRTase) domain, as revealed by a Pfam database search. The 2.01 A crystal structure of TT1426 has been determined by the multiwavelength anomalous dispersion (MAD) method. TT1426 comprises a core domain consisting of a central five-stranded beta sheet surrounded by four alpha-helices, and a subdomain in the C terminus. The core domain structure resembles those of the type I PRTase family proteins, although a significant structural difference exists in an inserted 43-residue region. The C-terminal subdomain corresponds to the "hood," which contains a substrate-binding site in the type I PRTases. The hood structure of TT1426 differs from those of the other type I PRTases, suggesting the possibility that TT1426 binds an unknown substrate. The structure-based sequence alignment provides clues about the amino acid residues involved in catalysis and substrate binding.  相似文献   

6.
The crystal structure of the Haemophilus influenzae protein HI1480 was determined at 2.1-A resolution. The amino acid sequence of HI1480 is unique, having no homology with other known protein sequences. The protein adopts a novel alpha+beta fold, and associates into a dimer of tightly associated dimers. The tight dimers are formed by intermolecular interactions that are mediated by an antiparallel beta-barrel involving both monomers. Helical regions of two dimers mediate the tetramer formation. The helical region contains a four-helix bundle that has been seen only in the anticodon binding domains of class I tRNA synthetases. A cluster of four residues, Tyr18, Arg134, Glu26, and Lys12 is located in a depression formed at the four-helix bundle/ beta-barrel interface. The arrangement is suggestive of an active center, possibly a catalytic site. The HI1480 gene is located within the Mu-like prophage region of H. influenzae, has no homology to bacteriophage genes, and is flanked by transposases. Hence, this is an example of horizontal transfer from an unknown organism. Gel mobility shift assays revealed that HI1480 binds DNA and RNA molecules. Double-stranded DNA is favored over single-stranded DNA, and longer DNA molecules are bound better than shorter ones.  相似文献   

7.
The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated "hypothetical protein" in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase "hot dog" fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupied by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.  相似文献   

8.
The bacterial protein encoded by the gene ychF is 1 of 11 universally conserved GTPases and the only one whose function is unknown. The crystal structure determination of YchF was sought to help with the functional assignment of the protein. The YchF protein from Haemophilus influenzae was cloned and expressed, and the crystal structure was determined at 2.4 A resolution. The polypeptide chain is folded into three domains. The N-terminal domain has a mononucleotide binding fold typical for the P-loop NTPases. An 80-residue domain next to it has a pronounced alpha-helical coiled coil. The C-terminal domain features a six-stranded half-barrel that curves around an alpha-helix. The crablike three-domain structure of YchF suggests the binding site for a double-stranded nucleic acid in the cleft between the domains. The structure of the putative GTP-binding site is consistent with the postulated guanine specificity of the protein. Fluorescence measurements have demonstrated the ability of YchF to bind a double-stranded nucleic acid and GTP. Taken together with other experimental data and genomic analysis, these results suggest that YchF may be part of a nucleoprotein complex and may function as a GTP-dependent translation factor.  相似文献   

9.
The crystal structure of YecO from Haemophilus influenzae (HI0319), a protein annotated in the sequence databases as hypothetical, and that has not been assigned a function, has been determined at 2.2-A resolution. The structure reveals a fold typical of S-adenosyl-L-methionine-dependent (AdoMet) methyltransferase enzymes. Moreover, a processed cofactor, S-adenosyl-L-homocysteine (AdoHcy), is bound to the enzyme, further confirming the biochemical function of HI0319 and its sequence family members. An active site arginine, shielded from bulk solvent, interacts with an anion, possibly a chloride ion, which in turn interacts with the sulfur atom of AdoHcy. The AdoHcy and nearby protein residues delineate a small solvent-excluded substrate binding cavity of 162 A(3) in volume. The environment surrounding the cavity indicates that the substrate molecule contains a hydrophobic moiety and an anionic group. Many of the residues that define the cavity are invariant in the HI0319 sequence family but are not conserved in other methyltransferases. Therefore, the substrate specificity of YecO enzymes is unique and differs from the substrate specificity of all other methyltransferases sequenced to date. Examination of the Enzyme Commission list of methyltransferases prompted a manual inspection of 10 possible substrates using computer graphics and suggested that the ortho-substituted benzoic acids fit best in the active site.  相似文献   

10.
Genome sequencing projects has led to an explosion of large amount of gene products in which many are of hypothetical proteins with unknown function. Analyzing and annotating the functions of hypothetical proteins is important in Staphylococcus aureus which is a pathogenic bacterium that cause multiple types of diseases by infecting various sites in humans and animals. In this study, ten hypothetical proteins of Staphylococcus aureus were retrieved from NCBI and analyzed for their structural and functional characteristics by using various bioinformatics tools and databases. The analysis revealed that some of them possessed functionally important domains and families and protein-protein interacting partners which were ABC transporter ATP-binding protein, Multiple Antibiotic Resistance (MAR) family, export proteins, Helix-Turn-helix domains, arsenate reductase, elongation factor, ribosomal proteins, Cysteine protease precursor, Type-I restriction endonuclease enzyme and plasmid recombination enzyme which might have the same functions in hypothetical proteins. The structural prediction of those proteins and binding sites prediction have been done which would be useful in docking studies for aiding in the drug discovery.  相似文献   

11.
The TT1542 protein from Thermus thermophilus HB8 is annotated as a conserved hypothetical protein, and belongs to the DUF158 family in the Pfam database. A BLAST search revealed that homologs of TT1542 are present in a wide range of organisms. The TT1542 homologs in eukaryotes, PIG-L in mammals, and GPI12 in yeast and protozoa, have N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) de-N-acetylase activity. Although most of the homologs in prokaryotes are hypothetical and have no known function, Rv1082 and Rv1170 from Mycobacterium tuberculosis are enzymes involved in the mycothiol detoxification pathway. Here we report the crystal structure of the TT1542 protein at 2.0 A resolution, which represents the first structure for this superfamily of proteins. The structure of the TT1542 monomer consists of a twisted beta-sheet composed of six parallel beta-strands and one antiparallel beta-strand (with the strand order 3-2-1-4-5-7-6) sandwiched between six alpha-helices. The N-terminal five beta-strands and four alpha-helices form an incomplete Rossmann fold-like structure. The structure shares some similarity to the sugar-processing enzymes with Rossmann fold-like domains, especially those of the GPGTF (glycogen phosphorylase/glycosyl transferase) superfamily, and also to the NAD(P)-binding Rossmann fold domains. TT1542 is a homohexamer in the crystal and in solution, the six monomers forming a cylindrical structure. Putative active sites are suggested by the structure and conserved amino acid residues.  相似文献   

12.
Atu4866 is a 79-residue conserved hypothetical protein of unknown function from Agrobacterium tumefaciens. Protein sequence alignments show that it shares > or =60% sequence identity with 20 other hypothetical proteins of bacterial origin. However, the structures and functions of these proteins remain unknown so far. To gain insight into the function of this family of proteins, we have determined the structure of Atu4866 as a target of a structural genomics project using solution NMR spectroscopy. Our results reveal that Atu4866 adopts a streptavidin-like fold featuring a beta-barrel/sandwich formed by eight antiparallel beta-strands. Further structural analysis identified a continuous patch of conserved residues on the surface of Atu4866 that may constitute a potential ligand-binding site.  相似文献   

13.
With the aim of elucidating the biological function of hypothetical proteins unique amongst the Actynomyces sub-group of bacteria, we have solved the crystal structure of the conserved hypothetical protein Rv1155 from Mycobacterium tuberculosis at 1.8 A resolution. Rv1155 is a homodimer both in the crystal structure and in solution and folds into two separate domains consisting of a six-stranded anti-parallel beta-barrel fold flanked by two alpha-helices and a helix-turn-helix domain. Both domains contribute to the formation of two deep clefts at the dimer interface. The overall fold of Rv1155 strikingly resembles that of flavin mononucleotide-binding protein and pyridoxamine 5'-phosphate oxydase, but the architecture of the putative binding pocket is markedly different, consistent with the lack of color of Rv1155 and its inability to bind FMN. Rv1155 thus appears to belong to a group of proteins with stringent conservation of the binding cleft, having evolved towards a new binding function.  相似文献   

14.
YggX is a highly conserved protein found only in eubacteria and is proposed to be involved in the bacterial response to oxidative stress. Here we report the solution structure of YggX from Escherichia coli determined by nuclear magnetic resonance spectroscopy. The structure of YggX displays a fold consisting of two N-terminal antiparallel beta-sheets and three alpha-helices, which shares significant structural similarity to the crystal structure of a hypothetical protein PA5148 from Pseudomonas aeruginosa. Previous studies propose YggX as an iron binding protein that is involved in cellular iron trafficking. Our data indicate that the protein alone does not bind iron in vitro, suggesting other cofactors or different conditions may be necessary for metal binding.  相似文献   

15.
CFE88 is a conserved essential gene product from Streptococcus pneumoniae. This 227-residue protein has minimal sequence similarity to proteins of known 3D structure. Sequence alignment models and computational protein threading studies suggest that CFE88 is a methyltransferase. Characterization of the conformation and function of CFE88 has been performed by using several techniques. Backbone atom and limited side-chain atom NMR resonance assignments have been obtained. The data indicate that CFE88 has two domains: an N-terminal domain with 163 residues and a C-terminal domain with 64 residues. The C-terminal domain is primarily helical, while the N-terminal domain has a mixed helical/extended (Rossmann) fold. By aligning the experimentally observed elements of secondary structure, an initial unrefined model of CFE88 has been constructed based on the X-ray structure of ErmC' methyltransferase (Protein Data Bank entry 1QAN). NMR and biophysical studies demonstrate binding of S-adenosyl-L-homocysteine (SAH) to CFE88; these interactions have been localized by NMR to the predicted active site in the N-terminal domain. Mutants that target this predicted active site (H26W, E46R, and E46W) have been constructed and characterized. Overall, our results both indicate that CFE88 is a methyltransferase and further suggest that the methyltransferase activity is essential for bacterial survival.  相似文献   

16.
The four approximately 75-residue domains (repeats) that constitute the annexin core structure all possess an identical five-alpha-helix bundle topology, but the physico-chemical properties of the isolated domains are different. Domain IV of the annexins has previously been expressed only as inclusion bodies, resistant to solubilisation. Analysis of the conserved, exposed hydrophobic residues of the four annexin domains reveals that domain IV contains the largest number of hydrophobic residues involved in interfacial contacts with the other domains. We designed five constructs of domain IV of annexin A2 in which several interfacial hydrophobic residues were substituted by hydrophilic residues. The mutant domain, in which all fully exposed hydrophobic interfacial residues were substituted, was isolated as a soluble protein. Circular dichroism measurements indicate that it harbours a high content of alpha-helical secondary structure and some tertiary structure. The CD-monitored (lambda=222 nm) thermal melting profile suggests a weak cooperative transition. Nuclear magnetic resonance (1H-15N) correlation spectroscopy reveals heterogeneous line broadening and an intermediate spectral dispersion. These properties are indicative of a partially folded protein in which some residues are in a fairly structured conformation, whereas others are in an unfolded state. This conclusion is corroborated by 1-anilinonaphthalene-8-sulfonate fluorescence (ANS) analyses. Surface plasmon resonance measurements also indicate that this domain binds heparin, a known ligand of domain IV in the full-length annexin A2, although with lower affinity.  相似文献   

17.
Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS.  相似文献   

18.
The integrase protein (Int) from bacteriophage lambda is the archetypal member of the tyrosine recombinase family, a large group of enzymes that rearrange DNA in all domains of life. Int catalyzes the insertion and excision of the viral genome into and out of the Escherichia coli chromosome. Recombination transpires within higher-order nucleoprotein complexes that form when its amino-terminal domain binds to arm-type DNA sequences that are located distal to the site of strand exchange. Arm-site binding by Int is essential for catalysis, as it promotes Int-mediated bridge structures that stabilize the recombination machinery. We have elucidated how Int is able to sequence specifically recognize the arm-type site sequence by determining the solution structure of its amino-terminal domain (IntN, residues Met1 to Leu64) in complex with its P′2 DNA binding site. Previous studies have shown that IntN adopts a rare monomeric DNA binding fold that consists of a three-stranded antiparallel beta-sheet that is packed against a carboxy-terminal alpha helix. A low-resolution crystal structure of the full-length protein also revealed that the sheet is inserted into the major groove of the arm-type site. The solution structure presented here reveals how IntN specifically recognizes the arm-type site sequence. A novel feature of the new solution structure is the use of an 11-residue tail that is located at the amino terminus. DNA binding induces the folding of a 310 helix in the tail that projects the amino terminus of the protein deep into the minor groove for stabilizing DNA contacts. This finding reveals the structural basis for the observation that the “unstructured” amino terminus is required for recombination.  相似文献   

19.
During C. elegans apoptosis, the dicer ribonuclease (DCR-1) is cleaved by the cell death protease CED-3 to generate a truncated DCR-1 (tDCR-1) with one and a half ribonuclease III (RNase III) domains, converting it into a deoxyribonuclease (DNase) that initiates apoptotic chromosome fragmentation. We performed biochemical and functional analyses to understand this unexpected RNase to DNase conversion. In full-length DCR-1, tDCR-1 DNase activity is suppressed by its N-terminal DCR-1 sequence. However, not all the sequence elements in the N-terminal DCR-1 are required for this suppression. Our deletion analysis reveals that a 20-residue α-helix sequence in DCR-1 appears to define a critical break point for the sequence required for suppressing tDCR-1 DNase activity through a structure-dependent mechanism. Removal of the N-terminal DCR-1 sequence from tDCR-1 activates a DNA-binding activity that also requires the one half RNase IIIa domain, and enables tDCR-1 to process DNA. Consistently, structural modeling of DCR-1 and tDCR-1 suggests that cleavage of DCR-1 by CED-3 may cause a conformational change that allows tDCR-1 to bind and process DNA, and may remove steric hindrance that blocks DNA access to tDCR-1. Moreover, a new DNase can be engineered using different RNase III domains, including the one from bacterial RNase III. Our results indicate that very distantly related RNase III enzymes have the potential to cleave DNA when processed proteolytically or paired with an appropriate partner that facilitates binding to DNA. We suggest the possibility that this phenomenon may be extrapolated to other ribonucleases.  相似文献   

20.
Diagnosis of eukaryotic parasitic infection using antibody-based tests such as ELISAs (enzyme-linked immunosorbent assays) is often problematic because of the need to differentiate between homologous host and pathogen proteins and to ensure that antibodies raised against a peptide will also bind to the peptide in the context of its three-dimensional protein structure. Filariasis caused by the nematode, Brugia malayi, is an important worldwide tropical disease in which parasites disappear from the bloodstream during daylight hours, thus hampering standard microscopic diagnostic methods. To address this problem, a structural approach was used to develop monoclonal antibodies (mAbs) that detect asparaginyl-tRNA synthetase (AsnRS) secreted from B. malayi. B. malayi and human AsnRS amino acid sequences were aligned to identify regions that are relatively unconserved, and a 1.9 A crystallographic structure of B. malayi AsnRS was used to identify peptidyl regions that are surface accessible and available for antibody binding. Sequery and SSA (Superpositional Structural Analysis) software was used to analyze which of these peptides was most likely to maintain its native conformation as a synthetic peptide, and its predicted helical structure was confirmed by NMR. A 22-residue peptide was synthesized to produce murine mAbs. Four IgG(1) mAbs were identified that recognized the synthetic peptide and the full-length parasite AsnRS, but not human AsnRS. The specificity and affinity of mAbs was confirmed by Western blot, immunohistochemistry, surface plasmon resonance, and enzyme inhibition assays. These results support the success of structural modeling to choose peptides for raising selective antibodies that bind to the native protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号