首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SOCS-1 (suppressor of cytokine signaling-1) is a representative of a family of negative regulators of cytokine signaling (SOCS-1 to SOCS-7 and CIS) characterized by a highly conserved C-terminal SOCS box preceded by an SH2 domain. This study comprehensively examined the ability of several SOCS family members to negatively regulate the gp130 signaling pathway. SOCS-1 and SOCS-3 inhibited both interleukin-6 (IL-6)- and leukemia inhibitory factor (LIF)-induced macrophage differentiation of murine monocytic leukemic M1 cells and LIF induction of a Stat3-responsive reporter construct in 293T fibroblasts. Deletion of amino acids 51-78 in the N-terminal region of SOCS-1 prevented inhibition of LIF signaling. The SOCS-1 and SOCS-3 N-terminal regions were functionally interchangeable, but this did not extend to other SOCS family members. Mutation of SH2 domains abrogated the ability of both SOCS-1 and SOCS-3 to inhibit LIF signal transduction. Unlike SOCS-1, SOCS-3 was unable to inhibit JAK kinase activity in vitro, suggesting that SOCS-1 and SOCS-3 act on the JAK-STAT pathway in different ways. Thus, although inhibition of signaling by SOCS-1 and SOCS-3 requires both the SH2 and N-terminal domains, their mechanisms of action appear to be biochemically different.  相似文献   

2.
3.
4.
Tyrosine kinase signaling is tightly controlled by negative feedback inhibitors including suppressors of cytokine signaling (SOCS). SOCS assemble as SH2 domain substrate recognition modules in ElonginB/C-cullin ubiquitin ligases. In accordance, SOCS4 reduces STAT3 signaling from EGFR through increased receptor degradation. Variable C-termini in SOCS4-SOCS7 exclude these family members from a SOCS2-type domain arrangement in which a strictly conserved C terminus determines domain packing. The structure of the SOCS4-ElonginC-ElonginB complex reveals a distinct SOCS structural class. The N-terminal ESS helix functionally replaces the CIS/SOCS1-SOCS3 family C terminus in a distinct SH2-SOCS box interface that facilitates further interdomain packing between the extended N- and C-terminal regions characteristic for this subfamily. Using peptide arrays and calorimetry the STAT3 site in EGFR (pY(1092)) was identified as a high affinity SOCS4 substrate (K(D) = 0.5 microM) revealing a mechanism for EGFR degradation. SOCS4 also bound JAK2 and KIT with low micromolar affinity, whereas SOCS2 was specific for GH-receptor.  相似文献   

5.
Insulin resistance is a pathophysiological component of type 2 diabetes and obesity and also occurs in states of stress, infection, and inflammation associated with an upregulation of cytokines. Here we show that in both obesity and lipopolysaccharide (LPS)-induced endotoxemia there is an increase in suppressor of cytokine signaling (SOCS) proteins, SOCS-1 and SOCS-3, in liver, muscle, and, to a lesser extent, fat. In concordance with these increases by LPS, tyrosine phosphorylation of the insulin receptor (IR) is partially impaired and phosphorylation of the insulin receptor substrate (IRS) proteins is almost completely suppressed. Direct overexpression of SOCS-3 in liver by adenoviral-mediated gene transfer markedly decreases tyrosine phosphorylation of both IRS-1 and IRS-2, while SOCS-1 overexpression preferentially inhibits IRS-2 phosphorylation. Neither affects IR phosphorylation, although both SOCS-1 and SOCS-3 bind to the insulin receptor in vivo in an insulin-dependent fashion. Experiments with cultured cells expressing mutant insulin receptors reveal that SOCS-3 binds to Tyr960 of IR, a key residue for the recognition of IRS-1 and IRS-2, whereas SOCS-1 binds to the domain in the catalytic loop essential for IRS-2 recognition in vitro. Moreover, overexpression of either SOCS-1 or SOCS-3 attenuates insulin-induced glycogen synthesis in L6 myotubes and activation of glucose uptake in 3T3L1 adipocytes. By contrast, a reduction of SOCS-1 or SOCS-3 by antisense treatment partially restores tumor necrosis factor alpha-induced downregulation of tyrosine phosphorylation of IRS proteins in 3T3L1 adipocytes. These data indicate that SOCS-1 and SOCS-3 act as negative regulators in insulin signaling and serve as one of the missing links between insulin resistance and cytokine signaling.  相似文献   

6.
A family of negative regulators of JAK signaling pathway referred to as suppressor of cytokines signaling (SOCS) or cytokine-inducible SH2 protein (CIS) has been recently identified. In order to find additional members of this family, we have used a consensus amino acid sequence contained in the well-conserved central SH2 domain to search DNA databases. We isolated cDNA coding for the human homologue of SOCS-5, referred to as CIS6. Northern blot analysis revealed CIS6 mRNA expression in various tissues such as heart, muscle, spleen, and thymus and in all myeloma cell lines examined. The gene was assigned to human chromosome bands 2p21 and 3p22 by in situ hybridization. CIS6 is structurally related to other members of the CIS family and therefore could act as a negative regulator of signal transduction.  相似文献   

7.
Suppressor of cytokine signaling (SOCS)-1 protein modulates signaling by IFN-gamma by binding to the autophosphorylation site of JAK2 and by targeting bound JAK2 to the proteosome for degradation. We have developed a small tyrosine kinase inhibitor peptide (Tkip) that is a SOCS-1 mimetic. Tkip is compared in this study with the kinase inhibitory region (KIR) of SOCS-1 for JAK2 recognition, inhibition of kinase activity, and regulation of IFN-gamma-induced biological activity. Tkip and a peptide corresponding to the KIR of SOCS-1, ((53))DTHFRTFRSHSDYRRI((68)) (SOCS1-KIR), both bound similarly to the autophosphorylation site of JAK2, JAK2(1001-1013). The peptides also bound to JAK2 peptide phosphorylated at Tyr(1007), pJAK2(1001-1013). Dose-response competitions suggest that Tkip and SOCS1-KIR similarly recognize the autophosphorylation site of JAK2, but probably not precisely the same way. Although Tkip inhibited JAK2 autophosphorylation as well as IFN-gamma-induced STAT1-alpha phosphorylation, SOCS1-KIR, like SOCS-1, did not inhibit JAK2 autophosphorylation but inhibited STAT1-alpha activation. Both Tkip and SOCS1-KIR inhibited IFN-gamma activation of Raw 264.7 murine macrophages and inhibited Ag-specific splenocyte proliferation. The fact that SOCS1-KIR binds to pJAK2(1001-1013) suggests that the JAK2 peptide could function as an antagonist of SOCS-1. Thus, pJAK2(1001-1013) enhanced suboptimal IFN-gamma activity, blocked SOCS-1-induced inhibition of STAT3 phosphorylation in IL-6-treated cells, enhanced IFN-gamma activation site promoter activity, and enhanced Ag-specific proliferation. Furthermore, SOCS-1 competed with SOCS1-KIR for pJAK2(1001-1013). Thus, the KIR region of SOCS-1 binds directly to the autophosphorylation site of JAK2 and a peptide corresponding to this site can function as an antagonist of SOCS-1.  相似文献   

8.
Suppressor of cytokine signaling (SOCS) family members are key regulators of immunological homeostasis. In this study, we have discovered the SOCS-2 member from Manila clam Ruditapes philippinarum and further analyzed its immune responses against lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly I:C). Amino acid sequence of RpSOCS-2 consists of cytokine inducible SRC homology 2 (SH2) and SOCS box domains similar to vertebrate SOCS counterparts. It has the highest amino acid identity (41%) with Pacific oyster (Crassostrea gigas) SOCS-2 and showed close evolutional relationship with disk abalone (Haliotis discus discus) SOCS-2. Tissue specific expression results showed that RpSOCS-2 was constitutively expressed in all examined tissues with the highest level in gill tissue of un-challenged clams. RpSOCS-2 mRNA expression was up-regulated by LPS and poly I:C challenge in gills. Discovery of RpSOCS-2 homologue and expression analysis would support for understanding evolutional relationships and their role in innate immune responses in mollusks, respectively.  相似文献   

9.
The c-KIT receptor tyrosine kinase mediates the cellular response to stem cell factor (SCF). Whereas c-KIT activity is important for the proliferation of hematopoietic cells, melanocytes and germ cells, uncontrolled c-KIT activity contributes to the growth of diverse human tumors. Suppressor of cytokine signaling 6 (SOCS6) is a member of the SOCS family of E3 ubiquitin ligases that can interact with c-KIT and suppress c-KIT-dependent pathways. Here, we analyzed the molecular mechanisms that determine SOCS6 substrate recognition. Our results show that the SH2 domain of SOCS6 is essential for its interaction with c-KIT pY568. The 1.45-Å crystal structure of SOCS6 SH2 domain bound to the c-KIT substrate peptide (c-KIT residues 564–574) revealed a highly complementary and specific interface giving rise to a high affinity interaction (Kd = 0.3 μm). Interestingly, the SH2 binding pocket extends to substrate residue position pY+6 and envelopes the c-KIT phosphopeptide with a large BG loop insertion that contributes significantly to substrate interaction. We demonstrate that SOCS6 has ubiquitin ligase activity toward c-KIT and regulates c-KIT protein turnover in cells. Our data support a role of SOCS6 as a feedback inhibitor of SCF-dependent signaling and provides molecular data to account for target specificity within the SOCS family of ubiquitin ligases.  相似文献   

10.
The suppressor of cytokine signalling (SOCS) box was first identified in the SH2-containing SOCS box family (cytokine-inducible SH2-containing protein, SOCS1-7) and is a 40-amino acid motif, which functions to recruit an E3 ubiquitin ligase complex consisting of the adapter proteins elongins B and C, Rbx2 and the scaffold protein Cullin5. The SOCS box is found in a diverse array of intracellular signalling molecules, many of which contain different protein interaction domains such as SPRY and WD40 domains, leucine and ankyrin repeats or other functional domains such as GTPases. In general, the SOCS box-containing proteins are thought to act as substrate-recognition modules to mediate the polyubiquitination and subsequent degradation of substrate proteins by the 26S proteasome.  相似文献   

11.
12.
13.
14.
SOCS (suppressor of cytokine signaling) proteins are inhibitors of cytokine signaling involved in negative feedback loops. We have recently shown that insulin increases SOCS-3 mRNA expression in 3T3-L1 adipocytes. When expressed, SOCS-3 binds to phosphorylated Tyr(960) of the insulin receptor and prevents Stat 5B activation by insulin. Here we show that in COS-7 cells SOCS-3 decreases insulin-induced insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation and its association with p85, a regulatory subunit of phosphatidylinositol-3 kinase. This mechanism points to a function of SOCS-3 in insulin resistance. Interestingly, SOCS-3 expression was found to be increased in the adipose tissue of obese mice, but not in the liver and muscle of these animals. Two polypeptides known to be elevated during obesity, insulin and tumor necrosis factor-alpha (TNF-alpha), induce SOCS-3 mRNA expression in mice. Insulin induces a transient expression of SOCS-3 in the liver, muscle, and the white adipose tissue (WAT). Strikingly, TNF-alpha induced a sustained SOCS-3 expression, essentially in the WAT. Moreover, transgenic ob/ob mice lacking both TNF receptors have a pronounced decrease in SOCS-3 expression in the WAT compared with ob/ob mice, providing genetic evidence for a function of this cytokine in obesity-induced SOCS-3 expression. As SOCS-3 appears as a TNF-alpha target gene that is elevated during obesity, and as SOCS-3 antagonizes insulin-induced IRS-1 tyrosine phosphorylation, we suggest that it is a player in the development of insulin resistance.  相似文献   

15.
16.
Members of the recently discovered SOCS/CIS/SSI family have been proposed as regulators of cytokine signaling, and while targets and mechanisms have been suggested for some family members, the precise role of these proteins remains to be defined. To date no SOCS proteins have been specifically implicated in interleukin-2 (IL-2) signaling in T cells. Here we report SOCS-3 expression in response to IL-2 in both T-cell lines and human peripheral blood lymphocytes. SOCS-3 protein was detectable as early as 30 min following IL-2 stimulation, while CIS was seen only at low levels after 2 h. Unlike CIS, SOCS-3 was rapidly tyrosine phosphorylated in response to IL-2. Tyrosine phosphorylation of SOCS-3 was observed upon coexpression with Jak1 and Jak2 but only weakly with Jak3. In these experiments, SOCS-3 associated with Jak1 and inhibited Jak1 phosphorylation, and this inhibition was markedly enhanced by the presence of IL-2 receptor beta chain (IL-2Rbeta). Moreover, following IL-2 stimulation of T cells, SOCS-3 was able to interact with the IL-2 receptor complex, and in particular tyrosine phosphorylated Jak1 and IL-2Rbeta. Additionally, in lymphocytes expressing SOCS-3 but not CIS, IL-2-induced tyrosine phosphorylation of STAT5b was markedly reduced, while there was only a weak effect on IL-3-mediated STAT5b tyrosine phosphorylation. Finally, proliferation induced by both IL-2- and IL-3 was significantly inhibited in the presence of SOCS-3. The findings suggest that when SOCS-3 is rapidly induced by IL-2 in T cells, it acts to inhibit IL-2 responses in a classical negative feedback loop.  相似文献   

17.
18.
Erythropoietin (Epo) is a hematopoietic cytokine that is crucial for the differentiation and proliferation of erythroid progenitor cells. Epo acts on its target cells by inducing homodimerization of the erythropoietin receptor (EpoR), thereby triggering intracellular signaling cascades. The EpoR encompasses eight tyrosine motifs on its cytoplasmic tail that have been shown to recruit a number of regulatory proteins. Recently, the feedback inhibitor suppressor of cytokine signaling-3 (SOCS-3), also referred to as cytokine-inducible SH2-containing protein 3 (CIS-3), has been shown to act on Epo signaling by both binding to the EpoR and the EpoR-associated Janus kinase 2 (Jak2) [Sasaki, A., Yasukawa, H., Shouda, T., Kitamura, T., Dikic, I. & Yoshimura, A. (2000) J. Biol. Chem 275, 29338-29347]. In this study tyrosine 401 was identified as a binding site for SOCS-3 on the EpoR. Here we show that human SOCS-3 binds to pY401 with a Kd of 9.5 microm while another EpoR tyrosine motif, pY429pY431, can also interact with SOCS-3 but with a ninefold higher affinity than we found for the previously reported motif pY401. In addition, SOCS-3 binds the double phosphorylated motif pY429pY431 more potently than the respective singly phosphorylated tyrosines indicating a synergistic effect of these two tyrosine residues with respect to SOCS-3 binding. Surface plasmon resonance analysis, together with peptide precipitation assays and model structures of the SH2 domain of SOCS-3 complexed with EpoR peptides, provide evidence for pY429pY431 being a new high affinity binding site for SOCS-3 on the EpoR.  相似文献   

19.
SOCS-3 is an insulin-induced negative regulator of insulin signaling   总被引:29,自引:0,他引:29  
The SOCS proteins are induced by several cytokines and are involved in negative feedback loops. Here we demonstrate that in 3T3-L1 adipocytes, insulin, a hormone whose receptor does not belong to the cytokine receptor family, induces SOCS-3 expression but not CIS or SOCS-2. Using transfection of COS-7 cells, we show that insulin induction of SOCS-3 is enhanced upon Stat5B expression. Moreover, Stat5B from insulin-stimulated cells binds directly to a Stat element present in the SOCS-3 promoter. Once induced, SOCS-3 inhibits insulin activation of Stat5B without modifying the insulin receptor tyrosine kinase activity. Two pieces of evidence suggest that this negative regulation likely results from competition between SOCS-3 and Stat5B binding to the same insulin receptor motif. First, using a yeast two-hybrid system, we show that SOCS-3 binds to the insulin receptor at phosphotyrosine 960, which is precisely where Stat5B binds. Second, using confocal microscopy, we show that insulin induces translocation of SOCS-3 from an intracellular compartment to the cell membrane, leading to colocalization of SOCS-3 with the insulin receptor. This colocalization is dependent upon phosphorylation of insulin receptor tyrosine 960. Indeed, in cells expressing an insulin receptor mutant in which tyrosine 960 has been mutated to phenylalanine, insulin does not modify the cellular localization of SOCS-3. We have thus revealed an insulin target gene of which the expression is potentiated upon Stat5B activation. By inhibiting insulin-stimulated Stat5B, SOCS-3 appears to function as a negative regulator of insulin signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号