首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphorylation of protein tyrosine kinases (PTKs) on tyrosine residues is a critical regulatory event that modulates catalytic activity and triggers the physical association of PTKs with Src homology 2 (SH2)-containing proteins. The integrin-linked focal adhesion kinase, pp125FAK, exhibits extracellular matrix-dependent phosphorylation on tyrosine and physically associates with two nonreceptor PTKs, pp60src and pp59fyn, via their SH2 domains. Herein, we identify Tyr-397 as the major site of tyrosine phosphorylation on pp125FAK both in vivo and in vitro. Tyrosine 397 is located at the juncture of the N-terminal and catalytic domains, a novel site for PTK autophosphorylation. Mutation of Tyr-397 to a nonphosphorylatable residue dramatically impairs the phosphorylation of pp125FAK on tyrosine in vivo and in vitro. The mutation of Tyr-397 to Phe also inhibits the formation of stable complexes with pp60src in cells expressing Src and FAK397F, suggesting that autophosphorylation of pp125FAK may regulate the association of pp125FAK with Src family kinases in vivo. The identification of Tyr-397 as a major site for FAK autophosphorylation provides one of the first examples of a cellular protein containing a high-affinity binding site for a Src family kinase SH2 domain. This finding has implications for models describing the mechanisms of action of pp125FAK, the regulation of the Src family of PTKs, and signal transduction through the integrins.  相似文献   

2.
3.
SH2 and SH3 domains are small protein modules of about 100 and 60 amino acids, respectively, that are found in many proteins involved in intracellular signal transduction. SH2 and SH3 domains mediate protein-protein interactions and modulate enzyme activity by their ability to bind to specific phosphorylated tyrosine residues or proline-rich sequences, respectively. The recent determination of the three-dimensional structures of several SH2 and SH3 domains has led to considerable progress in understanding their mechanism of action, and these structures are the focus of this review.  相似文献   

4.
Src homology 2 (SH2) domains interact in a highly specific manner with phosphorylated tyrosine residues on other signaling molecules. Protein tyrosine kinases (PTK) frequently contain SH2 domains, which often control signaling specificity. The Janus Kinases (JAKs) are a family of PTKs involved in signal transduction pathways mediated by various cytokines. Initial characterization of JAKs showed no identifiable SH2 domain. However, we have found substantial evidence supporting the existence of an SH2 domain in JAKs through the use of various web-based computational analysis programs. Predictive secondary and tertiary structures recognize an SH2 domain in JAKs. In addition, a three-dimensional homology model was constructed using the SH2 domains of Src tyrosine kinase and Syp tyrosine phosphatase as templates. These results, in conjunction with preliminary binding studies showing interactions with tyrosine phosphorylated proteins in activated splenocytes, suggest a functional role for this domain in JAKs.  相似文献   

5.
The protein tyrosine kinase (PTK) Csk is a potent negative regulator of several signal transduction processes, as a consequence of its exquisite ability to inactivate Src-related PTKs. This function requires not only the kinase domain of Csk, but also its Src homology 3 (SH3) and SH2 regions. We showed previously that the Csk SH3 domain mediates highly specific associations with two members of the PEP family of nonreceptor protein tyrosine phosphatases (PTPs), PEP and PTP-PEST. In comparison, the Csk SH2 domain interacts with several tyrosine phosphorylated molecules, presumed to allow targetting of Csk to sites of Src family kinase activation. Herein, we attempted to understand better the regulation of Csk by identifying ligands for its SH2 domain. Using a modified yeast two-hybrid screen, we uncovered the fact that Csk associates with PTP-HSCF, the third member of the PEP family of PTPs. This association was documented not only in yeast cells but also in a heterologous mammalian cell system and in cytokine-dependent hemopoietic cells. Surprisingly, the Csk-PTP-HSCF interaction was found to be mediated by the Csk SH2 domain and two putative sites of tyrosine phosphorylation in the noncatalytic portion of PTP-HSCF. Transfection experiments indicated that Csk and PTP-HSCF synergized to inhibit signal transduction by Src family kinases and that this cooperativity was dependent on the domains mediating their association. Finally, we obtained evidence that PTP-HSCF inactivated Src-related PTKs by selectively dephosphorylating the positive regulatory tyrosine in their kinase domain. Taken together, these results demonstrate that part of the function of the Csk SH2 domain is to mediate an inducible association with a PTP, thereby engineering a more efficient inhibitory mechanism for Src-related PTKs. Coupled with previously published observations, these data also establish that Csk forms complexes with all three known members of the PEP family.  相似文献   

6.
The phosphorylation of tyrosine, and to a lesser extent threonine and serine, plays a key role in the regulation of signal transduction during a plethora of eukaryotic cell functions, including cell activation, cell-cycle progression, cytoskeletal rearrangement and cell movement, differentiation, apoptosis and metabolic homeostasis. In vivo, tyrosine phosphorylation is reversible and dynamic; the phosphorylation states are governed by the opposing activities of protein tyrosine kinases (PTKs)2 and protein tyrosine phosphatases (PTPs). Reactive oxygen species (ROS) act as cellular messengers in cellular processes such as mitogenic signal transduction, gene expression, regulation of cell proliferation, senescence and apoptosis. Redox regulated proteins include PTPs and PTKs, although with opposite regulation of enzymatic activity. Transient oxidation of thiols in PTPs leads to their inactivation by the formation of either an intramolecular S–S bridge or a sulfenyl–amide bond. Conversely, oxidation of PTKs leads to their activation, either by direct SH modification or, indirectly, by concomitant inhibition of PTPs that guides to sustained activation of PTKs. This review focuses on the redox regulation of both PTPs and PTKs and the interplay of their specular regulation.  相似文献   

7.
Sriram G  Birge RB 《FEBS letters》2012,586(17):2615-2618
Since their discovery as cellular counterparts of viral oncogenes more than two decades ago, enormous progress has been made in unraveling the complex regulatory pathways of signal transduction initiated by the Crk family of proteins. New structural and biochemical studies have uncovered novel insights into both negative and positive regulation of Crk mediated by its atypical carboxyl-terminal SH3 domain (SH3C). Moreover, SH3C is tyrosine phosphorylated by receptor tyrosine kinases and non-receptor tyrosine kinases, thereby permitting assemblages of other SH2/PTB domain containing proteins. Such non-canonical signaling by the Crk SH3C reveals new regulatory strategies for adaptor proteins.  相似文献   

8.
The phosphorylation of tyrosine, and to a lesser extent threonine and serine, plays a key role in the regulation of signal transduction during a plethora of eukaryotic cell functions, including cell activation, cell-cycle progression, cytoskeletal rearrangement and cell movement, differentiation, apoptosis and metabolic homeostasis. In vivo, tyrosine phosphorylation is reversible and dynamic; the phosphorylation states are governed by the opposing activities of protein tyrosine kinases (PTKs)2 and protein tyrosine phosphatases (PTPs). Reactive oxygen species (ROS) act as cellular messengers in cellular processes such as mitogenic signal transduction, gene expression, regulation of cell proliferation, senescence and apoptosis. Redox regulated proteins include PTPs and PTKs, although with opposite regulation of enzymatic activity. Transient oxidation of thiols in PTPs leads to their inactivation by the formation of either an intramolecular S-S bridge or a sulfenyl-amide bond. Conversely, oxidation of PTKs leads to their activation, either by direct SH modification or, indirectly, by concomitant inhibition of PTPs that guides to sustained activation of PTKs. This review focuses on the redox regulation of both PTPs and PTKs and the interplay of their specular regulation.  相似文献   

9.
src family tyrosine kinases contain two noncatalytic domains termed src homology 3 (SH3) and SH2 domains. Although several other signal transduction molecules also contain tandemly occurring SH3 and SH2 domains, the function of these closely spaced domains is not well understood. To identify the role of the SH3 domains of src family tyrosine kinases, we sought to identify proteins that interacted with this domain. By using the yeast two-hybrid system, we identified p62, a tyrosine-phosphorylated protein that associates with p21ras GTPase-activating protein, as a src family kinase SH3-domain-binding protein. Reconstitution of complexes containing p62 and the src family kinase p59fyn in HeLa cells demonstrated that complex formation resulted in tyrosine phosphorylation of p62 and was mediated by both the SH3 and SH2 domains of p59fyn. The phosphorylation of p62 by p59fyn required an intact SH3 domain, demonstrating that one function of the src family kinase SH3 domains is to bind and present certain substrates to the kinase. As p62 contains at least five SH3-domain-binding motifs and multiple tyrosine phosphorylation sites, p62 may interact with other signalling molecules via SH3 and SH2 domain interactions. Here we show that the SH3 and/or SH2 domains of the signalling proteins Grb2 and phospholipase C gamma-1 can interact with p62 both in vitro and in vivo. Thus, we propose that one function of the tandemly occurring SH3 and SH2 domains of src family kinases is to bind p62, a multifunctional SH3 and SH2 domain adapter protein, linking src family kinases to downstream effector and regulatory molecules.  相似文献   

10.
Many signaling molecules are multidomain proteins that have other domains in addition to the catalytic kinase domain. Protein tyrosine kinases almost without exception contain Src homology 2 (SH2) and/or SH3 domains that can interact with other signaling proteins. Here, we studied evolution of the tyrosine kinases containing SH2 and/or SH3 and kinase domains. The three domains seem to have duplicated together, since the phylogenetic analysis using parsimony gave almost identical evolutionary trees for the separate domains and the multidomain complexes. The congruence analysis of the sequences for the separate domains also suggested that the domains have coevolved. There are several reasons for the domains to appear in a cluster. Kinases are regulated in many ways, and the presence of SH2 and SH3 domains at proper positions is crucial. Because all three domains can recognize different parts of ligands and substrates, their evolution has been interconnected. The reasons for the clustering and coevolution of the three domains in protein tyrosine kinases (PTKs) are discussed.  相似文献   

11.
12.
Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that gamma-tubulin (gamma-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, gamma-tubulin, and with anti-phosphotyrosine antibody revealed that gamma-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in gamma-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated gamma-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing gamma-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of gamma-tubulin interaction with tubulin dimers or other proteins during neurogenesis.  相似文献   

13.
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.  相似文献   

14.
15.
Catalytic (SH1) domains of protein tyrosine kinases (PTKs) demonstrate specificity for peptide substrates. Whether SH1 domains differentiate between tyrosines in a physiological substrate has not been confirmed. Using purified proteins, we studied the ability of Syk, Fyn, and Abl to differentiate between tyrosines in a common PTK substrate, c-Cbl. We found that each kinase produced a distinct pattern of c-Cbl phosphorylation, which altered the phosphotyrosine-dependent interactions between c-Cbl and CrkL or phosphatidylinositol 3'-kinase (PI3-K). Our data support the concept that SH1 domains determine the final sites of phosphorylation once PTKs reach their target proteins.  相似文献   

16.
17.
18.
Tyrosine phosphorylation of membrane proteins plays a crucial role in cell signaling by recruiting Src homology 2 (SH2) domain-containing signaling molecules. Recently, we have isolated a transmembrane protein designated PZR that specifically binds tyrosine phosphatase SHP-2, which has two SH2 domains (Zhao, Z. J., and Zhao, R. (1998) J. Biol. Chem. 273, 29367-29372). PZR belongs to the immunoglobulin superfamily. Its intracellular segment contains four putative sites of tyrosine phosphorylation. By site-specific mutagenesis, we found that the tyrosine 241 and 263 embedded in the consensus immunoreceptor tyrosine-based inhibitory motifs VIYAQL and VVYADI, respectively, accounted for the entire tyrosine phosphorylation of PZR. The interaction between PZR and SHP-2 requires involvement of both tyrosyl residues of the former and both SH2 domains of the latter, since its was disrupted by mutating a single tyrosyl residue or an SH2 domain. Overexpression of catalytically inactive but not active forms of SHP-2 bearing intact SH2 domains in cells caused hyperphosphorylation of PZR. In vitro, tyrosine-phosphorylated PZR was efficiently dephosphorylated by the full-length form of SHP-2 but not by its SH2 domain-truncated form. Together, the data indicate that PZR serves not only as a specific anchor protein of SHP-2 on the plasma membrane but also as a physiological substrate of the enzyme. The coexisting binding and dephosphorylation of PZR by SHP-2 may function to terminate signal transduction initiated by PZR and SHP-2 and to set a threshold for the signal transduction to be initiated.  相似文献   

19.
Protein tyrosine phosphorylation is a fundamental regulatory mechanism controlling cell proliferation, differentiation, communication, and adhesion. Disruption of this key regulatory mechanism contributes to a variety of human diseases including cancer, diabetes, and auto-immune diseases. Net protein tyrosine phosphorylation is determined by the dynamic balance of the activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Mammals express many distinct PTKs and PTPs. Both of these families can be sub-divided into non-receptor and receptor subtypes. Receptor protein tyrosine kinases (RPTKs) comprise a large family of cell surface proteins that initiate intracellular tyrosine phosphorylation-dependent signal transduction in response to binding of extracellular ligands, such as growth factors and cytokines. Receptor-type protein tyrosine phosphatases (RPTPs) are enzymatic and functional counterparts of RPTKs. RPTPs are a family of integral cell surface proteins that possess intracellular PTP activity, and extracellular domains that have sequence homology to cell adhesion molecules. In comparison to extensively studied RPTKs, much less is known about RPTPs, especially regarding their substrate specificities, regulatory mechanisms, biological functions, and their roles in human diseases. Based on the structure of their extracellular domains, the RPTP family can be grouped into eight sub-families. This article will review one representative member from each RPTP sub-family.  相似文献   

20.
Signalling through SH2 and SH3 domains   总被引:46,自引:0,他引:46  
In 1986, Pawson's group recognized a region of homology between two oncogenic tyrosine kinases that lay outside the catalytic domain. They termed this the Src homology 2, or SH2, domain. In the ensuing years, SH2 domains have been found in an impressive variety of proteins, as has a second region of homology, inevitably termed SH3. These domains appear to mediate controlled protein-protein interactions. Many proteins that contain SH2 and SH3 domains are involved in signal transduction, suggesting a new paradigm for regulation of intracellular signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号