首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary and splenic Kurloff cells have been purified from estrogen-treated guinea pig. Enzymatic digestion of lung tissue and mechanical dispersion of cells yielded about 650 x 10(6) viable cells. After centrifugal elutriation and centrifugation on continuous Percoll gradient, a population of high-density (1,100 g/ml) pulmonary Kurloff cells were obtained with high viability (approximately 99%) and purity (approximately 99%). Splenic Kurloff cells have been isolated by disruption of spleen tissue and centrifugation on continuous Percoll gradient. High-density splenic Kurloff cells (150 x 10(6) cells per spleen) were also obtained with high purity (approximately 99%) and viability (approximately 99%). Pulmonary and splenic Kurloff cells were incubated with various concentrations of arachidonic acid (10, 30 and 100 microM) in the absence or presence of 2 microM ionophore A23187. With 10 microM arachidonic acid the relative production of cyclooxygenase products was the following: TxB2 greater than PGE2 approximately PGI2. For an arachidonic acid concentration superior to 10 microM, the profile of release was PGE2 much greater than TxB2 greater than PGI2. Arachidonic acid metabolism through the 5-lipoxygenase pathway was also studied by incubating pulmonary or splenic Kurloff cells with 10 microM arachidonic acid in the absence or presence of 2 microM ionophore A23187, or in some experiments, with 2.5 microM leukotriene A4. Reverse phase HPLC profiles clearly indicated that high-density Kurloff cells did not express 5-lipoxygenase activity. However, these cells showed the ability to convert exogenous leukotriene A4 into leukotriene B4 suggesting the presence of LTA4 hydrolase activity. These data have been confirmed by a sensitive RIA method. This study constitutes the first report on the purification of pulmonary Kurloff cells and on arachidonic acid metabolism by these cells. The possible implications of Kurloff cells in various biological events are discussed.  相似文献   

2.
A method for the isolation of non-ciliated bronchiolar epithelial (Clara) cells from the guinea pig is described. Following digestion of the lung tissue with Type XXIV protease, the isolated lung cells showed a viability greater than 90% and contained 3% of Clara cells. Several cell populations were then separated on the basis of size using 2 centrifugal elutriations. The macrophages and endothelial cells were removed from the Clara cells enriched fractions by differential adherence on Petri dishes. The Clara cell-rich suspension was then further purified by centrifugation on Percoll non-continuous density gradients consisting of 48-52-55% Percoll solution. The lower interface and the pellet of the non-continuous gradient consisted of approximately 80% Clara cells. Identification of isolated Clara cells was confirmed by light microscopic observations after nitroblue tetrazolium staining and by ultrastructural characteristic features as observed by electron microscopy. The metabolism of arachidonic acid into prostaglandins and TxB2 by purified Clara cells was examined by enzyme immunoassay (EIA) and leukotriene formation was investigated by reverse phase high performance liquid chromatography (RP-HPLC). Enriched guinea pig Clara cells incubated with arachidonic acid released TxB2, PGE2 and 6-keto PGF1 alpha, but did not produce leukotrienes. These cells could however transform exogenous leukotriene A4 into leukotriene B4. These results suggest that guinea pig Clara cells possess the enzymes of the cyclooxygenase pathway required for TxB2, PGE2 and 6-keto-PGF1 alpha synthesis. Clara cells do not possess the 5-lipoxygenase enzyme but show some leukotriene A4 hydrolase activity since they can produce leukotriene B4 upon incubation with leukotriene A4.  相似文献   

3.
Human alveolar type II cells are thought to play a role in the pathogenesis of lung injury. Patterns of mediator release of arachidonic acid metabolism by type II cells were therefore studied after challenge with calcium ionophore A23187, opsonized zymosan and hydrogen peroxide. A time- and concentration dependent release of cyclooxygenase products was observed, with release of PGE2 greater than 6-keto-PGF1 alpha greater than TxB2. Addition of glutathione or bicarbonate further increased the production of PGE2. N-ethylmaleimide, a sulfhydryl (SH) reactant, induced a dose-dependent increase in the release of TxB2 and 6-keto-PGF1 alpha, but not of PGE2. This relates most likely to the SH-dependency and glutathione requirement of the PGE2 isomerase and SH-independence of thromboxane and prostacyclin isomerase.  相似文献   

4.
THE acyl carrier coenzyme A (CoA) is involved in fatty acid metabolism. The carnitine/CoA ratio is of particular importance in regulating the transport of long-chain fatty acids into mitochondria for oxidation. Also CoA has a role in the formation and breakdown of products from both the cyclooxygenase and lipoxygenase pathways of the precursor arachidonic acid. In the present study the effect of 4 days feeding of 300 mg/kg/day of L-carnitine, acetyl Lcarnitine and propionyl L-carnitine on the basal and calcium ionophore (A23187) stimulated release of arachidonic acid metabolites from rat carrageenin elicited peritoneal cells was investigated. There were two series of experiments carried out. In the first, the harvested peritoneal cell population consisted of less than 90% macrophages and additional polymorphonuclear (PMN) leucocytes. The basal release of prostaglandin E(2) (PGE(2)), 6-ketoprostaglandin F(1alpha) (6-keto-PGF(1alpha)) and leukotriene B(4) (LTB(4)) was stimulated by all treatments. The A23187 stimulated release of 6-keto-PGF(1alpha) and LTB(4) was increased by all three compounds. The 6-keto-PGF(1alpha):TxB(2) and 6-keto-PGF(1alpha):LTB(4) ratios were increased by carnitine treatment. These results suggested that carnitine could modify the macrophage component of an inflammatory site in vivo. In the second series of experiments the harvested cell population was highly purified (>95% macrophages) and none of the compounds fed to the rats caused a change of either eicosanoid or TNFalpha formation. Moreover the 6-keto-PGF(1alpha):TxB(2) and 6-keto-PGF(1alpha):LTB(4) ratios were not enhanced by any of the compounds tested. It is conceivable that in the first series the increased ratios 6-keto-PGF(1alpha):TxB(2) and 6-keto-PGF(1alpha):LTB(4) reflected the effect of carnitine or its congeners on PMN leucocytes rather than on macrophages.  相似文献   

5.
This study investigated the response of bovine pulmonary artery endothelial cells to incubation in hyperoxia (95% O2-5% CO2). Changes in cell number and morphology, release of lactate dehydrogenase, and production of arachidonic acid metabolites were assessed during continuous exposure of confluent endothelial monolayers to air (air-5% CO2, "controls") or O2 (95% O2-5% CO2, "O2-exposed") for periods of 12-72 h. Control monolayer cell numbers remained constant (approximately 2,000,000 cells/flask), whereas the number of cells in O2-exposed monolayers decreased progressively to 30% of controls (P less than 0.01) by 72 h. As assessed by radioimmunoassay, both control and O2-exposed cells produced the prostacyclin metabolite, 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), and prostaglandin F2 alpha (PGF2 alpha), but no thromboxane metabolite (TxB2) was detected. The O2-exposed cells released significantly more 6-keto-PGF1 alpha and PGF2 alpha than control cells when apparent net production rates over the entire 72-h period were compared. In addition, both control and O2-exposed (48 h) endothelial monolayers released immunoreactive leukotriene B4 (LTB4) on stimulation with calcium ionophore (10 microM A23187). As with the cyclooxygenase products, O2-exposed cells released more immunoreactive LTB4 than did controls. Both cyclooxygenase and lipoxygenase metabolites of arachidonic acid are released by cultured endothelial cells during the development of O2 toxicity.  相似文献   

6.
Epidermal Langerhans cells are macrophage-like la+ leukocytes that are critically involved in cutaneous immune reactions. Because macrophages exert their immunoregulatory activity in part by generation of oxygenated arachidonic acid metabolites, we systematically studied arachidonic acid transformations by purified guinea pig Langerhans cells and compared them with mixed epidermal cells and Langerhans cell-depleted keratinocytes. Products formed from arachidonic acid by cell homogenates were measured after thin-layer or reverse-phase high-pressure liquid chromatographic separation. In addition, leukotriene B4 and C4 formation was assessed in supernatants of Ca ionophore A23187-challenged intact cells by radioimmunoassay. Mixed epidermal cells converted arachidonic acid predominantly via cyclooxygenase and 12-lipoxygenase pathways. The main products were prostaglandin D2 (PGD2) and 12-hydroxyeicosatetraenoic acid (12-Hete), although significant amounts of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha were formed as well. PGD2 synthesis was dependent on the presence of reduced glutathione. The product spectrum formed by Langerhans cell-depleted keratinocytes was virtually indistinguishable from mixed epidermal cells. In contrast, Langerhans cells showed a markedly different metabolism of arachidonic acid. They exhibited an exceedingly high PGD2-generating capacity, whereas only minor amounts of 12-HETE and very low amounts of other prostaglandins were synthesized. The PGD2/12-HETE ratio was 1.22 for mixed epidermal cells and 4.37 for Langerhans cells. Leukotriene production from exogenous or endogenous arachidonic acid could not be demonstrated by either radioenzymatic or radioimmunologic detection methods. We conclude that guinea pig Langerhans cells transform arachidonic acid predominantly to PGD2, which might mediate significant immunoregulatory, inflammatory, and antitumoral activity in the skin.  相似文献   

7.
The output of prostaglandins I2, E2, F2 alpha and 13,14-dihydro-15-keto-PGF2 alpha (PGFM) from third passage day 20 rat fetal fibroblasts and type II alveolar pneumonocytes was studied. In 2 h incubations, the output levels for each cell type were: PGI2 greater than PGE2 much greater than PGF2 alpha = PGFM when cells were incubated with Ca2+ ionophore A23187 (10 microM) or arachidonic acid (1 microgram/ml).  相似文献   

8.
In the present study we investigated the arachidonic acid metabolism in guinea pig placenta during the last third of gestation. Homogenates were incubated with 14C-labeled substrate, and eicosanoid formation was determined using rp HPLC. Arachidonic acid was substantially converted to cyclooxygenase products i.e 6-keto-PGF1 alpha, TxB2, PGF2 alpha, PGE2, PGD2 and 12-HHT. Lipoxygenase activity was also found but of a much lower degree and represented by the mono-hydroxy acids 12-HETE and 15-HETE. The total conversion of arachidonic acid exhibited a progressive rise from day 50 to term, due principally to the increasing part of TxB2, PGE2 and 12-HHT throughout this gestational period and in addition, near term, of 6-keto-PGF1 alpha and PGF2 alpha. These results suggest that there is an increasing concentration and/or activity of cyclooxygenase system enzymes with placental development in guinea pig, which may contribute to the augmented intrauterine availability of prostanoids near parturition. Additional experiments were performed to compare the metabolism of exogenously added 14C-arachidonic acid and endogenously present 12C-arachidonic acid during placental homogenate incubation by means of isotope dilution GC-MS. Although the 14C- and 12C-prostanoid patterns were comparable, the 14C/12C ratios of the prostanoids formed during incubation were significantly different. These data indicate that exogenous arachidonic acid and endogenous arachidonic acid in placental homogenate do not follow up exactly the same metabolic pathway so that the assumption of biochemical identity between exogenous radio-tracer and studied endogenous substrate is not quite true.  相似文献   

9.
To determine identities of mediators and mechanisms for their release from pulmonary airway epithelial cells, we examined the capacities of epithelial cells from human, dog and sheep airways to incorporate, release and oxygenate arachidonic acid. Purified cell suspensions were incubated with radiolabeled arachidonic acid and/or ionophore A23187; fatty acid esterification and hydrolysis were traced chromatographically, and oxygenated metabolites were identified using high-pressure liquid chromatography and mass-spectrometry. In each species, cellular uptake of 10 nM arachidonic acid was concentrated in the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine fractions, and subsequent incubation with 5 microM A23187 caused release of 10-12% of the radiolabeled pool selectively from phosphatidylcholine and phosphatidylinositol. By contrast, the products of arachidonic acid oxygenation were species-dependent and in the case of human cells were also novel: A23187-stimulated human epithelial cells converted arachidonic acid predominantly to 15-hydroxyeicosatetraenoic acid (15-HETE) and two distinct 8,15-diols in addition to prostaglandin (PG) E2 and PGF2 alpha. Cell incubation with exogenous arachidonic acid (2.0-300 microM) led to progressively larger amounts of 15-HETE and the dihydroxy, epoxyhydroxy and keto acids characteristic of arachidonate 15-lipoxygenase. Both dog and sheep cells converted exogenous or endogenous arachidonic acid to low levels of 5-lipoxygenase products, including leukotriene B4 without significant 15-lipoxygenase activity. In the cyclooxygenase series, sheep cells selectively released PGE2, while dog cells generated predominantly PGD2. The findings demonstrate that stereotyped esterification and phospholipase activities are expressed at uniform levels among airway epithelial cells from these species, but pathways for oxygenating arachidonic acid allow mediator diversity depending greatly on species and little on arachidonic acid presentation.  相似文献   

10.
Arachidonic acid metabolism in isolated glomeruli from pig kidney was investigated. Arachidonic acid metabolism via cyclooxygenase was studied by three different methodological approaches: radioimmunoassay (RIA), high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). By all these techniques, the major prostaglandins (PG) formed by pig glomeruli appeared to be 6-keto-PGF1 alpha and PGF2 alpha, the former being the most abundant. RIA and GC-MS also detected lower amounts of thromboxane B2 (TxB2) and PGE2. This emphasises the similarity with human glomeruli, in which the main cyclooxygenase product has indeed been reported to be 6-keto-PGF1 alpha. The lipoxygenase activity in isolated pig glomeruli, as studied by HPLC, generated 15-HETE, 12-HETE and 5-HETE. These data demonstrate that isolated glomeruli from pig kidney possess cyclooxygenase as well as lipoxygenase activity. Since a marked functional similarity exists between human and pig kidney, the pig can be regarded as a good model for studying the influence of arachidonic acid metabolites on glomerular pathophysiology.  相似文献   

11.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

12.
Arachidonic acid metabolism can lead to synthesis of cyclooxygenase products in the lung as indicated by measurement of such products in the perfusate of isolated lungs perfused with a salt solution. However, a reduction in levels of cyclooxygenase products in the perfusate may not accurately reflect the inhibition of levels of such products as measured in lung parenchyma. We infused sodium arachidonate into the pulmonary circulation of isolated dog lungs perfused with a salt solution and measured parenchymal, as well as perfusate, levels of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), prostaglandin F2 alpha (PGF2 alpha), prostaglandin E2 (PGE2), and thromboxane B2 (TxB2). These studies were repeated with indomethacin (a cyclooxygenase enzyme inhibitor) in the perfusate. We found that indomethacin leads to a marked reduction in perfusate levels of PGF2 alpha, PGE2, 6-keto-PGF1 alpha, and TxB2, as well as a marked reduction in parenchymal levels of 6-keto-PGF1 alpha and TxB2 when parenchymal levels of PGF2 alpha and PGE2 are not reduced. We conclude that, with some cyclooxygenase products, a reduction in levels of these products in the perfusate of isolated lungs may not indicate inhibition of levels of these products in the lung parenchyma and that a reduction in one parenchymal product may not predict the reduction of other parenchymal products. It can be speculated that some of the physiological actions of indomethacin in isolated lungs may result from incomplete or selective inhibition of synthesis of pulmonary cyclooxygenase products.  相似文献   

13.
Although there are many data concerning the cytotoxic and immunosuppressive effects of antimetabolites such as azathioprine and 6-mercaptopurine, the mechanism of their antiinflammatory action has not been extensively investigated. In the present work, it is shown that azathioprine and 6-mercaptopurine (10-500 micrograms/ml) inhibit in a dose-dependent manner the production of PGE2, PGF2 alpha, 6-keto-PGF1 alpha and TXB2 by unseparated spleen cells as well as that of 6-keto-PGF1 alpha by adherent peritoneal macrophages. This inhibitory effect appears rapidly in vitro (within 15 min of incubation) and is observed in the presence of exogenous arachidonic acid (5 x 10(-6) M). The persistence of this effect in the presence of arachidonic acid, together with the fact that the production of four cyclooxygenase derivatives of acid arachidonic metabolism are inhibited, suggests that these drugs are acting at the cyclooxygenase level. The finding that cytotoxic and immunosuppressive agents, which act mainly by inhibiting RNA and DNA synthesis, can block prostaglandin production, may explain part of their antiinflammatory effects.  相似文献   

14.
Prostaglandin (PG) E2 synthesis elicited by adrenergic agonists in the guinea pig trachea has been shown to be mediated via activation of beta-adrenergic receptors. The purpose of this study was to examine arachidonic acid (AA) metabolism and to characterize the subtype of beta receptor involved in PG synthesis. [14C]AA was incubated with guinea pig tracheal rings, and the radiolabelled products were extracted from the medium. Thin layer chromatographic analysis and radioimmunoassay of the extract showed that [14C]AA was incorporated into guinea pig tracheal rings and metabolized mainly into radiolabeled and immunoreactive PGE2 (iPGE2) and smaller amounts into PGF2 alpha. Trace amounts of PGD2, TxB2 and 6-keto-PGF1 alpha but not LTB4 or LTC4 were detected by enzyme immunoassay. Incubation of guinea pig tracheal rings for 10 min with isoproterenol or salbutamol resulted in a significant increase in PGE2 synthesis (optimum concentration 0.1 microM for both compounds). In contrast, dobutamine, BRL 37344, BRL 28410, norepinephrine, phenylephrine, and xylazine (up to 1 microM) did not significantly increase PGE2 production. Isoproterenol-induced iPGE2 production was inhibited by the selective beta 2 receptor antagonist butoxamine (0.1-1.0 microM) and somewhat reduced by the beta 1 receptor antagonist practolol (1 microM). The increase in PGE2 synthesis was diminished with increasing concentrations of isoproterenol (0.5-5.0 microM) or salbutamol (0.5-1.0 microM); but it was reversed by pretreatment of tracheal rings with the protein synthesis inhibitors cycloheximide (0.9 microM) and actinomycin D (2 microM) but not by phenylisopropyl adenosine (0.1-1.0 microM), an inhibitor of adenylyl cyclase. These data suggest that isoproterenol-induced iPGE2 synthesis is primarily via activation of a beta 2 adrenergic receptor. Failure to enhance iPGE2 synthesis by a high concentration of isoproterenol is likely to be due to an induction of new inhibitory protein synthesis.  相似文献   

15.
Previous studies have reported that polyunsaturated fatty acids (PUFAs) of nutritional interest may influence arachidonic acid (20:4n-6) metabolism in both platelets and endothelium, when tested separately. In the present study, platelets (PL) and cultured endothelial cells (EC) were first pre-enriched with eight different PUFAs for a two hour incubation in the presence of free fatty acid albumin pre-coated with each acid. EC, PL or both cell populations in combination, were then stimulated by thrombin (0.1 U/ml) for five minutes. Prostanoids were extracted, purified by thin-layer chromatography, and TxB2, 6-keto-PGF1 alpha and PGE2 were quantitated by radioimmunoassays. Prostanoids or dihomoprostanoids formed from cyclooxygenase substrates other than 20:4n-6 were measured by gas chromatography-negative chemical ionisation mass-spectrometry (GC-MS). When co-incubated with EC, PL produced less TxB2 (-15 and -85% in the absence and presence of thrombin, respectively). In contrast, 6-keto-PGF1 alpha increased by 189 (basal conditions) and 358% (thrombin stimulation) when PL were added to EC, in agreement with PGH2 transfers from PL to EC. PGE2, produced by both cell populations, reached amounts which roughly represent the sum of those measured in PL and EC alone, except when cells were pre-enriched with linoleic (18:2n-6) and the n-3 family fatty acids (18:3-, 20:5- and 22:6n-3). 6-keto-PGF1 alpha was markedly inhibited by adrenic acid (22:4n-6), while this acid was converted into dihomo-6-keto-PGF1 alpha, the stable metabolite of dihomoprostacyclin. 22:4n-6 also inhibited TxB2 formation and was converted into dihomo-TxA2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The metabolism of arachidonic acid (AA) was investigated in purified guinea pig alveolar eosinophils and macrophages. Alveolar eosinophils produced 12S-hydroxy-5,8,10-heptadecatraenoic acid (HHT) and small amounts only of 5-lipoxygenase products when stimulated by AA (10 microM) or ionophore A23187 (2 microM). However, when the cell suspensions were stimulated with both AA and A23187, the cells produced HHT, leukotriene (LT) B4, and 5S-hydroxy-6,8,11,14-eicosatetraenoic acid, whereas LTC4, D4, and E4 were undetectable. Similarly, alveolar macrophages stimulated with A23187 produced HHT, 5-hydroxy-6,8,11,14-eicosatetraenoic acid, and LTB4 but no peptido-leukotrienes. When LTA4 was added to suspensions of eosinophils and macrophages, only LTB4 was formed, whereas in parallel experiments, intact human platelets incubated with LTA4 produced LTC4. These data suggest that guinea pig alveolar eosinophils and macrophages contain both cyclooxygenase and 5-lipoxygenase, but do not produce peptido-leukotrienes, probably lacking LTA4 glutathione transferase activity. These studies demonstrate that guinea pig eosinophils differ from eosinophils of other animal species which have been shown to be major sources of leukotriene C4. The present data imply that eosinophils and macrophages are not the source of peptido-leukotrienes in anaphylactic guinea pig lungs.  相似文献   

17.
Radiotracer studies and radioimmunoassay measurements demonstrate that minced tissues of human decidua produce chiefly thromboxane B2 (TxB2) (70% of total eicosanoids) and small amounts of prostaglandin F2 alpha (PGF2 alpha) (13%) PGD2 (8%), 6-keto-PGF1 alpha (5%) and PGE2 (4%). Inhibition of thromboxane synthesis with a specific inhibitor (OKY-1581: sodium (E)-3-[4(-3-pyridylmethyl)-phenyl]-2-methyl propenoate) increased prostaglandin formation in general, with the main product being PGF2 alpha (38%), a nonenzymic derivative of PGH2. Crude particulate fractions prepared from the same tissue synthesized two major products from [3H]arachidonate, TxB2 and 6-keto-PGF1 alpha (54 and 30%, respectively) and some PGF2 alpha and PGE2 (8-8%). However, in the presence of reduced glutathione (GSH), PGE2 became the main product (81%) (TxB2, 15%; PGF2 alpha, 2%; and 6-keto-PGF1 alpha, 2%). Half-maximal stimulation of PGE2 synthesis occurred at 46 microM GSH. The GSH concentration of tissue samples was found to be 110 +/- 30 microM. We conclude that human first trimester decidua cells possess the key enzymes of prostaglandin and thromboxane synthesis. Apparently, the production of these compounds is controlled by a specific mechanism in the tissue, which keeps PGE and prostacyclin synthesis in a reversibly suppressed state, whereas the formation of thromboxane is relatively stimulated.  相似文献   

18.
Glucocorticoid effect on arachidonic acid metabolism in vivo   总被引:1,自引:0,他引:1  
Glucocorticoids have been shown in in vitro systems to inhibit the release of arachidonic acid metabolites, namely prostaglandins (PGs) and leukotrienes, apparently, via the induction of a phospholipase A2 inhibitory protein, called lipocortin. On the basis of these in vitro results, it has been suggested that inhibition of eicosanoid production is, at least partially, responsible for the well-known anti-inflammatory effect of glucocorticoids. There is, however, no firm evidence proving that glucocorticoids also inhibit prostaglandin or leukotriene synthesis in vivo. In a series of studies, we have investigated the effects of anti-inflammatory steroids on the production of six different cyclo-oxygenase products in vivo. Urinary prostaglandin (PG) E2(1), PGF2 alpha, thromboxane B2 (TxB2), 6-keto-PGF1 alpha, and the major urinary metabolites of the E and F PGs, PGE-M and PGF-M, respectively, were determined by radioimmunoassay and by GC-MS. Administration of pharmacological doses of dexamethasone to rabbits failed to inhibit urinary excretion rates of PGE2, TxB2, 6-keto-PGF1 alpha and that of PGE-M and PGF-M. In contrast, urinary PGF2 alpha was slightly reduced by dexamethasone. In further experiments the effect of dexamethasone was studied in humans. Urinary excretion rates of PGE2, PGE-M, PGF-M, 2,3-dinor TxB2 and 2,3-dinor 6-keto-PGF1 alpha were not suppressed by dexamethasone. Collagen-induced platelet TxB2 formation and platelet aggregation was also unaltered. To test one possible explanation for the apparent discrepancy between in vitro and in vivo effects of glucocorticoids on arachidonic acid metabolites we investigated the effects of dexamethasone in vivo on basal and on antidiuretic hormone-stimulated renal PG synthesis. Dexamethasone treatment failed to inhibit both basal and antidiuretic hormone-stimulated PGE2 and PGF2 alpha production. We conclude that glucocorticoids in vivo do not decrease the basal rate of total body, kidney and platelet prostanoid synthesis, and that dexamethasone does not inhibit renal PG production when it is elevated by antidiuretic hormone, a physiological stimulus. Thus, a differential effect of glucocorticoids on basal vs stimulated PG synthesis cannot account for the discrepancy between in vivo and in vitro effects.  相似文献   

19.
The purpose of this investigation was to study the mechanism of stimulation of PGE2 output from human amnion epithelial cells by the synthetic glucocorticoid dexamethasone. Cells incubated in serum-free pseudo-amniotic fluid produced very low levels of PGE2, even when arachidonic acid (1 microM) was present. Pretreatment of cells with dexamethasone (50 nM) for 21 h increased the PGE2 output 6- to 7-fold in 2-h incubations only in the presence of arachidonic acid. The RNA synthesis inhibitor, actinomycin D (1 microgram/ml), and the protein synthesis inhibitor, cycloheximide (40 micrograms/ml), each blocked dexamethasone-stimulated arachidonic acid conversion to PGE2. The time course of these events suggests that dexamethasone first initiates RNA synthesis. Acetylsalicylic acid, a specific and irreversible blocker of prostaglandin endoperoxide H synthase (cyclooxygenase), was used to determine whether dexamethasone could stimulate new enzyme synthesis. Cells treated first with acetylsalicylic acid (30 min) then dexamethasone (22 h) produced as much PGE2 in response to 1 microM arachidonate as did cells exposed to dexamethasone only. Exposing cells to acetylsalicylic acid after dexamethasone completely eliminated PGE2 output. These data suggest that dexamethasone stimulates the synthesis of prostaglandin endoperoxide H synthase.  相似文献   

20.
Altered macrophage arachidonic acid metabolism may play a role in endotoxic shock and the phenomenon of endotoxin tolerance induced by repeated injections of endotoxin. Studies were initiated to characterize both lipoxygenase and cyclooxygenase metabolite formation by endotoxin tolerant and non-tolerant macrophages in response to 4 different stimuli, i.e. endotoxin, glucan, zymosan, and the calcium ionophore A23187. In contrast to previous reports of decreased prostaglandin synthesis by tolerant macrophages, A23187-stimulated immunoreactive (i) leukotriene (LT)C4/D4 and prostaglandin (PG)E2 production by tolerant cells was greater than that by non-tolerant controls (p less than 0.001). However, A23187-stimulated i-6-keto-PGF1 alpha levels were lower in tolerant macrophages compared to controls. Stimulation of prostaglandin and thromboxane (Tx)B2 synthesis by endotoxin or glucan was significantly less in tolerant macrophages compared to controls (p less than 0.05). iLTC4/D4 production was not significantly stimulated by endotoxin or glucan, but was stimulated by zymosan in the non-tolerant cells. Synthesis of iLTB4 by control macrophages was stimulated by endotoxin (p less than 0.01). These results demonstrate that arachidonic acid metabolism via the lipoxygenase and cyclooxygenase pathways in macrophages is differentially altered by endotoxin tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号