首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The binding constant of methyl-2-aminobenzoate to beta-cyclodextrin was determined by fluorescence titration to be 92.1M?1 at 25°C in pH 7 buffer. Beta-cyclodextrin dramatically protects methyl-2-aminobenzoate against quenching by iodate and protects, though much less efficiently, against the smaller quencher, iodide. The observed decrease in fluorescence lifetime of the methyl-2-aminobenzoate-beta-cyclodextrin complex on addition of quencher indicates that the quenching mechanism is collisional (dynamic). The dependence of quenching rate on solvent viscosity is less than expected from simple theoretical considerations. However, the extent of beta-cyclodextrin protection is essentially viscosity-independent. These model studies show the usefulness of iodate as a quencher and encourage further attempts at quantitative interpretation of quenching studies on chromophores attached to biopolymers.  相似文献   

2.
Raman spectra were measured for poly(L -histidine) in H2O, poly(L -histidine-d2 and -d3) in D2O, L -histidine in H2O, L -histidine-d3 (and d4) in D2O, and 4-methylimidazole in H2O with various pH (or pD) values. The Raman scattering peaks observed for these samples were ascribed to the neutral and positively charged imidazole groups on the basis of the spectral changes due to the pH variation and to the deuterium substitution of the imino protons. The vibrational modes of these peaks were deduced from the normal coordinate analysis made on the positively charged and neutral 4-ethylimidazoles. The Raman scattering peaks from the imidazole groups in the neutral form clearly indicate that these imidazole groups exist in the equilibrium between the two tautomeric forms, the 1-N protonated from (tautomer I) and the 3-N protonated one (tautomer II). For example, the breathing vibration of the 1-N protonated form is observed at 1282 cm?1 for L -histidine and at 1304 cm?1 for 4-methylimidazole, while the breathing vibration of the 3-N protonated form is observed at 1260 cm?1 for L -histidine and 4-methylimidazole. From the temperature dependence of the relative intensities of the tautomer I peak to that of the tautomer II, it was concluded that the tautomer I is energetically more stable than the tautomer II, and the ΔH value is 1.0 ± 0.3 kcal/mol for L -histidine and 0.4 ± 0.1 kcal/mol for 4-methylimidazole. Poly(L -histidine) with the neutral imidazole side chains shows the amide I peak at 1672 cm?1, indicating that the sample assumes the antiparallel pleated-sheet structure. Poly(L -Ala75L -His25) and poly(L -Ala50L -His50) were found to take the α-helical and β-form conformations, respectively.  相似文献   

3.
Proper determination of the temperature dependence of intrinsic tryptophan fluorescence intensity in native and denatured states is an essential prerequisite for extracting the free energy of protein unfolding from the thermal denaturation profile. The most common method employed in determining the temperature dependence of these conformations is through the determination of slopes of pre- and post-transition baselines. However, simulations of protein unfolding profiles suggest that this method does not work for marginally stable proteins. We show herein that the temperature dependence of the fluorescence intensity of N-acetyl tryptophanamide (NATA) in organic solvents and water may be used to represent the temperature dependence of the fluorescence intensity of tryptophan in native and denatured conformations of a protein, respectively. The wavelength of the emission maximum, λ max, of N-acetyl tryptophanamide (NATA) in a particular solvent or tryptophan in proteins is related to the temperature dependence (m) of its fluorescence intensity by the equation: m (K−1) = (−0.000299 ± 2.2 × 10−5 K−1 nm−1) × λ max (nm) + (0.0919 ± 0.0025 K−1).  相似文献   

4.
Reactions of Au(III)-alkyldiamine complex with l-histidine and imidazole were carried out and monitored time-dependant by 1H and 13C NMR. Kinetics for the [Au(en)Cl2]+ reaction with l-histidine was determined by initial rate method at constant pH and 25 °C using UV-Vis absorption technique, and found to be first order with respect to each component, with a pseudo second order rate constant of 39 ± 3 M−1 s−1. Reaction rates of l-histidine and imidazole reactions with the [Au(en)Cl2]+ complex was found to be strongly dependant on pD. The pD also has profound effect on the stability of the complex. It was observed that concurrent redox reactions also take place in solution in which Au(III) is reduced to metallic Au(0), while l-histidine and imidazole are oxidized to oxy and hydroxyl products. The optimization of the structure of [(His)Au(en)]3+ complex was carried out by gaussian03 at the RB3LYP level that showed a distorted square pyramid with the histidine carboxyl group at the pyramid top.  相似文献   

5.
Intrinsic steady-state fluorescence of lactoperoxidase (LPO) and its ligand-bound complexes has been characterized as a structural probe of its structure in solution. On excitation at 295 nm, a broad emission maximum is observed around 338 nm for LPO and for its ligand-bound complexes. The quantum yield is 0.0185±0.0005 for LPO and indicates tryptophan heme energy transfer. Tryptophan residues are located away from heme and are approximately equally distributed among hydrophobic and hydrophilic environments. From Förster resonance energy transfer equations, the average distance between tryptophans and heme within the enzyme is computed to be 25.1±0.2 Å. These fluorescence properties are consistent with the recent theoretical three-dimensional model for LPO and reveal that Trp337 and Trp404 dominate the intrinsic fluorescence, and together contribute 64% of the observed intensity. The effects of the denaturing agents guanidine hydrochloride and urea on the intrinsic fluorescence of LPO and CD of the backbone amide chromophores have been examined. The considerably red shifted emission maximum at 356 nm indicates that tryptophans, buried in the hydrophobic environment, are exposed to the solvent on denaturation. A simple two-state transition between the native and denatured forms of the protein has been used to explain the results. [Denaturant]1/2 5.5 M, determined from both these experiments, indicates that LPO is relatively stable toward the denaturing agents. Quenching studies using. I, Cs+ and polar neutral acrylamide are consistent with this picture. Acrylamide can penetrate the protein matrix. It is an efficient quencher and the quenching process is essentially homogeneous with all the tryptophans being accessible. Cs+ ion is a very inefficient quencher but the iodide ion shows the quenching process to be predominantly heterogeneous with widely differing tryptophan accessibility. The Stern–Volmer constants deduced are K sv =8.4±1.4 M–1 and K sv =4.05±0.65 M–1 for acrylamide and iodide quenching, respectively. The fractional accessibility, f a , deduced is f a =0.52±0.03 for iodide quenching.  相似文献   

6.
The production of ethanol from carob pods by Saccharomyces cerevisiae in solid-state fermentation was investigated. The maximal ethanol concentration (160±3 g/kg dry pods), ethanol productivity (6.7 ± 0.2 g/kg per hour), ethanol yield (40 ± 1.8%), biomass concentration (7.5 ± 0.4 x 108 cells/g carob pulp) and fermentation efficiency (80 ± 2%) were obtained at an inoculum amount of 3%, a particle size of 0.5 mm, a moisture level of 70%, a pH of 4.5 and a temperature of 30°C. Under the same fermentation conditions both sterilized and non-sterilized carob pods pulp gave the same maximum ethanol concentration.  相似文献   

7.
The fluorescence lifetime and rotational correlation time of the tryptophan residue in melittin, as both a monomer and tetramer, have been measured between pH 6 and 11. The fluorescence decays are non-exponential and give lifetimes of 0.7±0.1 ns and 3.1±0.1 ns. This emission is consistent with a model in which the tryptophan residue is in slightly different environments in the protein. In a dilute solution of monomer the mean fluorescence lifetime is 2.3±0.1 ns, below pH 10, but falls to 1.7 ns at higher pH. In contrast, the melittin tetramer has a mean fluorescence lifetime of only 2.2 ns at pH 6, which falls to 1.9 ns by pH 8, and falls again above pH 10 to the same value as in monomeric melittin. The behaviour between pH 6 and 8 is explained as the quenching of the Trp residue by lysine groups, which are near to the Trp in the tetramer but in the monomer, are too distant to quench. Fluorescence anisotropy decays show that the Trp residue has considerable freedom of motion and the range of wobbling motion is 35±10° in the tetramer  相似文献   

8.
The study of the reaction of p-nitrophenyl acetate (PNPA) with histidine and certain derivatives showed that the species in which the amino group is unprotonated (R(NH2)Im) react with second-order rate constants ( ) that are higher than predicted by a Brønsted relation for a series of neutral amino acids. The reason for this behavior was investigated through an analysis of the kinetics of the reaction of PNPA with these compounds in order to assess the reactivities of the amino and imidazole groups in the two species . The rate constant for the reaction with the imidazole group ( ) of Nπ-methyl histidine agrees with the value predicted by a Brønsted relation obtained from a series of model imidazole compounds. Nτ-Methyl histidine, however, is unreactive, indicating that Nτ is the reactive nitrogen in the imidazole ring of histidine. The values found for histidine, histidine methyl ester, and Nα-dimethyl histidine are lower than predicted by the Brønsted relation. This behavior was found to be due to low reactivity of the
. The evidence presented suggests that the lower reactivity of is due to an ion-dipole interaction between the protonated amino group and the unprotonated imidazole ring, which displaces the tautomeric equilibrium toward the unreactive Nτ-H form. The higher reactivity of the imidazole group in the species R(NH2)Im, relative to that in , is responsible for the observed high values for histidine, for histidine methyl ester, for Nτ-methyl histidine, and for Nα-dimethyl histidine, in contrast with the normal value found for Nτ-methyl histidine. The conclusions from this study of histidine and its derivatives support the proposal of an interaction between the protonated N-terminal amino group and the imidazole ring of His6 in the octapeptide hormone angiotensin.  相似文献   

9.
Summary A technique for isolating thestratum corneum from the subjacent layers of the epithelium was developed which permits studying thestratum corneum as an isolated membrane mounted between half-chambers. The method basically consists of an osmotic shock induced by immersing a piece of skin in distilled water at 50°C for 2 min. When the membrane is bathed on each surface by NaCl-Ringer's solution, its electrical resistance is 14.1±1.3 cm2 (n=10). This value is about 1/100 of the whole skin resistance in the presence of the same solution. The hydraulic filtration coefficient (L p ) measured by a hydrostatic pressure method, with identical solutions on each side of the membrane, is 8.8×10–5±1.5×10–5 cm sec–1 atm–1 (n=10) in distilled water and 9.2×10–5±1.4×10–5 cm sec–1 atm–1 (n=10) in NaCl-Ringer's solution. These values are not statistically different and are within the range of 1/80 to 1/120 of the whole skinL p . Thestratum corneum shows an amphoteric character when studied by KCl diffusion potentials at different pH's. The membrane presents an isoelectric pH of 4.6±0.3 (n=10). Above the isoelectric pH the potassium transport number is higher than the chloride transport number; below it, the reverse situation is valid. Divalent cations (Ca++ or Cu++) reduce membrane ionic discrimination when the membrane is negatively charged and are ineffective when the membrane fixed charges are protonated at low pH.  相似文献   

10.
CD, electron spin resonance, and fluorescence spectroscopy have been utilized to study the adenine binding site of ricin and its toxic A-subunit. At acidic (4.5) and physiological (7.3) pH, adenine or a spin-labeled analogue of adenine, N6-(2,2,6,6-tetramethyl-1-oxypiperidin-4-yl) adenine, alters the near uv CD spectra of the ricin A-chain as well as intact ricin, whereas the far uv CD spectra of all proteins remain unchanged. Electron spin resonance data show that the adenine spin-labeled analogue interacts strongly with the A-chain both at pH 4.5 and 7.3, but no or very weak binding is observed for the intact ricin or the isolated B-chain. The adenine spin label gets highly immobilized (2AII = 65.5G) by the A-chain. The apparent dissociation constant Kd for the toxic A-chain ligand complex is 1.55 × 10?4 M and 5.6 × 10?5 M at pH 7.3 and 4.5, respectively. Fluorescence intensity of ricin A-chain bound 1,8-anilinonaphthalenesulfonic acid (ANS) decreases by ~55% at pH 4.5 with the addition of the spin-labeled analogue of adenine, implying that both the ANS and adenine spin label (ADSL) bind to the hydrophobic domain of the A-chain. Fluorescence of the only intrinsic tryptophan probe of the A-chain is also efficiently quenched by ADSL, indicating that the tryptophan residue and the hydrophobic adenine binding site are closely located. All spectroscopic measurements indicate that adenine or its spin-labeled analogue has a single binding site adjacent to the TRP211 residue in the A-chain. Expansion of the A-chain globule and subsequent exposure of the hydrophobic binding site seem to be responsible for the increased binding of adenine at pH 4.5. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Hydroxide, bicarbonate and buffer anion permeabilities in semitendinosus muscle fibers of Rana pipiens were measured. In all experiments, the fibers were initially equilibrated in isotonic, high K2SO4 solutions at pH o =7.2 buffered with phosphate. Two different methods were used to estimate permeabilities: (i) membrane potential changes were recorded in response to changes in external ion concentrations, and (ii) intracellular pH changes were recorded in response to changes in external concentrations of ions that alter intracellular pH. Constant field equations were used to calculate relative or absolute permeabilities.In the first method, to increase the size of the membrane potential change produced by a sudden change in anion entry, external K+ was replaced by Cs+ prior to changes of the anion under study. At constant external Cs+ activity, a hyperpolarization results from increasing external pH from 7.2 to 10.0 or higher, using either CAPS (3-[cyclohexylamino]-1-propanesulfonic acid) or CHES (2-[N-cyclohexylamino]-ethanesulfonic acid) as buffer. For each buffer, the protonated form is a zwitterion of zero net charge and the nonprotonated form is an anion. Using reported values of H+ permeability, calculations show that the reduction in [H+] o cannot account for the hyperpolarizations produced by alkaline solutions. Membrane hyperpolarization increases with increasing total external buffer concentration at constant external pH, and with increasing external pH at constant external buffer anion concentration. Taken together, these observations indicate that both OH and buffer anions permeate the surface membrane. The following relative permeabilities were obtained at pHo, 10.0± 0.3: (POH/PK) = 890 ± 150, (PCAPS/PK) = 12 ± 2 (PCHIES/PK) = 5.3 ± 0.9, and (PNO3/PK) = 4.7 ± 0.5 PNO/PK was independent of pH o up to 10.75. At pHo = 9.6, (PHCO3/PK) = 0.49 ± 0.03; at pH o = 8.9, (PCl/PK) = 18± 2 and at pH o = 7.1, (PHEPES/PK) = 20 ± 2.In the second method, on increasing external pH from 7.2 to 10.0, using 2.5 mm CAPS (total buffer concentration), the internal pH increases linearly with time over the next 10 min. This alkalinization is due to the entry of OH and the absorption of internal H+ by entering CAPS anion. The rate of CAPS entry was determined in experiments in which the external CAPS concentration was increased at constant external pH. Such increases invariably produced an increase in the rate of internal alkalinization, which was reversed when the CAPS concentration was reduced to its initial value. From the internal buffer power, the diameter of the fiber under study and the rates of change of internal pH, the absolute permeability for both OH and CAPS were calculated. At external pH = 10.0, the average (±sem) permeabilities were: POH=1.68±0.19×10–4 cm/sec and PCAPS=2.10±0.74×10–6cm/sec.We conclude that OH is about 50 times more permeable than Cl at alkaline pH and that the anionic forms of commonly used buffers have significant permeabilities.This research was supported by a grant from the National Institutes of Health (AR 31814). The authors wish to thank Dr. Peter G. Shrager and Dr. Bruce C. Spalding for reading an early draft of this report and for providing helpful suggestions.  相似文献   

12.
The wild-type lac repressor of Escherichia coli is a tetrameric protein which contains two tryptophanyl residues per subunit at positions 190 and 209. Solute perturbation studies of the tryptophan fluorescence of the repressor were performed using a polar but uncharged quencher, acrylamide, to prevent possible bias caused by ionic quenchers. The results indicate that the two tryptophan residues have different accessibilities to the quencher. In addition, contrary to a previous report, the accessibility of these tryptophan residues is not altered by isopropyl-β-d-thiogalactoside (IPTG) binding to the repressor. Similar studies with mutant lac repressor containing only a single tryptophan either at positions 190 or 209 suggest that tryptophan 209 is located in a region which is perturbed by inducer binding. That the two tryptophanyl residues have heterogeneous environments was further confirmed by nanosecond fluorescence spectroscopy which showed the wild-type lac repressor exhibiting two excited-state lifetimes, τ1 = 5.3 ns and τ2 = 10 ns. In the presence of 10?3m IPTG, only a single lifetime of 6 ns was observed for the wild-type repressor suggesting that the inducer perturbs the tryptophan residue with the longer lifetime but not the one with the shorter lifetime. This is in accord with the observation that the mutant repressor containing only tryptophan 190 (the Tyr-209 repressor) has a single lifetime of 4.5 ns which is not altered by IPTG binding. The surprising finding that the mutant repressor which contains only tryptophan 209 (the Tyr-190 repressor) shows two excited-state lifetimes has been interpreted to indicate that the repressor either does not exhibit fourfold symmetry in its subunit arrangement or is present in two different conformational states.  相似文献   

13.
Chitin deacetylase (CDA) is an enzyme that catalyzes the hydrolysis of acetamine groups of N-acetyl-d-glucosamine in chitin, converting it to chitosan in fungal cell walls. In the present study, the activity in batch culture of CDA from six Mucoralean strains, two of them wild type, isolated from dung of herbivores of Northeast Brazil, was screened. Among the strains tested, Cunninghamella bertholletiae IFM 46114 showed a high intracellular enzyme activity of 0.075 U/mg protein after 5 days of culture, and a wild-type strain of Mucor circinelloides showed a high intracellular enzyme activity of 0.060 U/mg protein, with only 2 days of culture, using N-acetylchitopentaose as substrate. This enzyme showed optimal activity at pH 4.5 in 25 mM glutamate-sodium buffer at 50°C, and was stable over 1 h preincubation at the same temperature. The kinetic parameters of CDA did not follow Michaelis-Menten kinetics, but rather Hill affinity distribution, showing probable allosteric behavior. The apparent KHILL and Vmax of CDA were 288±34 nmol/l and 0.08±0.01 U mg protein–1 min–1, respectively, using N-acetylchitopentaose as substrate at pH 4.5 at 50°C.  相似文献   

14.
The interaction of three forms of bovine angiotensin-converting enzyme (ACE) with the competitive peptide inhibitor lisinopril with a fluorescent label was studied by the fluorescence polarization technique. The dissociation constants K d of the enzyme-inhibitor complexes in 50 mM Hepes-buffer, pH 7.5, containing 150 mM NaCl and 1 M ZnCl2 at 37°C were (2.3 ± 0.4)·10–8, (2.1 ± 0.3)·10–8, and (2.1 ± 0.2)·10–8 M for two-domain somatic ACE, single-domain testicular ACE, and for the N-domain of the enzyme, respectively. The interaction of the enzyme with the inhibitor strongly depended on the presence of chloride in the medium, and the apparent dissociation constant of the ACE-chloride complex was (1.3 ± 0.2)·10–3 M for the somatic enzyme. The dissociation kinetics of the complex of the inhibitor with somatic ACE did not fit the kinetics of a first-order reaction, but it was approximated by a model of simultaneous dissociation of two complexes with the dissociation rate constants (0.13 ± 0.01) sec–1 and (0.026 ± 0.001) sec–1 that were present at approximately equal initial concentrations. The dissociation kinetics of the single-domain ACE complexes with the inhibitor were apparently first-order, and the dissociation rate constants were similar: (0.055 ± 0.001) and (0.041 ± 0.001) sec–1 for the N-domain and for testicular ACE, respectively.  相似文献   

15.
The protamine thynnine is an arginine-rich protein approximately 30 amino acids long with a tyrosine in the middle of its sequence. Its fluorescence decay kinetics can be described by a biexponential function with lifetimes of 0.52 and 2.1 ns, with almost equal preexponential factors. The fluorescence quencher CsCl does not affect the short lifetime but shifts the equilibrium between the long and short lifetime toward the short one and reduces the long lifetime. In nature, thynnine is found complexed with chromosomal DNA. In vitro complexes of thynnine with double-stranded (ds) DNA are stable at physiologic ionic strength but dissociate at high NaCl concentration. This dissociation can be monitored by steady-state fluorescence. From the salt concentration dependence of the dissociation of the complex of thynnine with ds-DNA 145 bp long, it can be concluded that only 4 of 21 possible full electrostatic bonds are involved in thynnine-DNA binding. In addition, the binding constant at 1M NaCl is of the order of 106, indicating a strong nonelectrostatic component in arginine-DNA binding.  相似文献   

16.
Phycobiliproteins (PBPs) are a type of promising sensitizers for photodynamic therapy (PDT). Upon irradiation (λ>500nm) of an oxygen-saturated aqueous solution of phycobiliproteins, particularly, C-phycocyanin (C-PC), allophycocyanin (APC) or R-phycoerythrin (R-PE), the formation of singlet oxygen (1O2) was detected by using imidazole in the presence of p-nitrosodimethylaniline (RNO). The bleaching of RNO caused by the presence of imidazole in our system showed typical concentration dependence with a maximum at about 8mM imidazole, which is in agreement with the formation of 1O2. In addition, the generation of 1O2 was verified further in the presence of D2O and specific singlet oxygen quencher — 1,4-diazabicyclo [2,2,2] octane (DABCO) and sodium azide (NaN3). Our experimental results indicated that APC possesses high ability to generate reactive oxygen species and the relative quantum yields of photogeneration of 1O2 by PBPs are as follows: APC > C-PC > R-PE.  相似文献   

17.
The stoichiometry, stability constants and solution structure of the complexes formed in the reaction of copper(II) with hexapeptide NPTNLH, i.e. the Neobelliera Bullata Trypsin Modulating Oostatic Factor (Neb-TMOF), and its analogues DPTNLH, Ac-NPTNLH and Ac-DPTNLH have been determined by potentiometric, UV-visible, CD and EPR spectroscopic methods. Upon raising pH for Ac-NPTNLH and Ac-DPTNLH peptides, copper(II) coordination starts from the imidazole nitrogen of the His6; afterwards three deprotonated amide nitrogens are progressively involved in metal ions coordination. In a wide pH range of 4.5-8.5 for the NPTNLH and DPTNLH ligands the CuL complex dominates with the imidazole nitrogen of His6 coordinated to form a macrochelate. The N-terminal amino group of the NPTNLH and DPTNLH peptides takes part in the coordination of the metal ion in the CuL, CuH−1L and CuH−2L complexes. However, at pH above 9 the CuH−3L complex with the {NIm, 3N} coordination mode is formed. For the CuH−2L complex the spectroscopic data clearly indicate the 4N {NH2, CO or COO, 2N, NIm} bonding mode with the axial coordination of the N-terminal amine group to the metal ion.  相似文献   

18.
Summary The developmental maturation of Na+–H+ antiporter was determined using a well-validated brush-border membrane vesicles (BBMV's) technique. Na+ uptake represented transport into an osmotically sensitive intravesicular space as evidenced by an osmolality study at equilibrium. An outwardly directed pH gradient (pH inside/pH outside=5.2/7.5) significantly stimulated Na+ uptake compared with no pH gradient conditions at all age groups; however, the magnitude of stimulation was significantly different between the age groups. Moreover, the imposition of greater pH gradient across the vesicles resulted in marked stimulation of Na+ uptake which increased with advancing age. Na+ uptake represented an electroneutral process.The amiloride sensitivity of the pH-stimulated Na+ uptake was investigated using [amiloride] 10–2–10–5 m. At 10–3 m amiloride concentration, Na+ uptake under pH gradient conditions was inhibited 80, 45, and 20% in BBMV's of adolescent, weanling and suckling rats, respectively. Kinetic studies revealed aK m for amiloride-sensitive Na+ uptake of 21.8±6.4, 24.9±10.9 and 11.8±4.17mm andV max of 8.76±1.21, 5.38±1.16 and 1.99±0.28 nmol/mg protein/5 sec in adolescent, weanling and suckling rats, respectively. The rate of pH dissipation, as determined by the fluorescence quenching of acridine orange, was similar across membrane preparation of all age groups studied. These findings suggest for the first time the presence of an ileal brush-border membrane Na+–H+ antiporter system in all ages studied. This system exhibits changes in regard to amiloride sensitivity and kinetic parameters.  相似文献   

19.
1-Methylisocytosine (1-MeIC) can be protonated at the endocyclic N(3) position (pKa of 1-MeICH+, 4.02 ± 0.04) or complexed at this position with (dien)MII (M = Pt, Pd). X-ray crystal structures of the protonated species 1 as well as the Pd (2) and Pt (3) complexes are reported, and gas phase structures of the cation 2 and 3 have been calculated by ab initio methods. These results are compared with results from X-ray crystallography. At high pH, the Pt complex 3 undergoes deamination of the exocyclic N(2)H2 group to the 1-methyluracilate complex. As compared to the situation with 1-methylcytosine (1-MeC), the accelerating effect of (dien)PtII is much less pronounced, however.  相似文献   

20.
The fluorescence emission spectrum of N-acetyl tryptophan amide (NATA) in 20 mM K-phosphate buffer, pH 7.5, with excitation at 295 nm, when subjected to second derivatization, showed two troughs at 340 1.0 nm (A) and 358.5 1.0 nm (B). Linear dependence of derivative intensities at A and B was observed with increasing NATA concentration between 0-30 nM but the intensity ratio (B/A), termed R, was found to be invariant at 0.70 0.05. R remained unaffected with variation of the pH (4-10), temperature (15-70 degrees C), salt concentration (0-2 M NaCl), and excitation wavelength between 280-300 nm. A 50-fold molar excess of N-acetyl tyrosine over 10 nM NATA and inclusion of a quencher like 0.8 M acrylamide, 0.4 M potassium iodide or trichloroethanol had no effect on R. It was, however, linearly dependent on the polarity of the solvent-in 1,4-dioxane it became 0.07 0.05. Derivative spectra of tryptophans of proteins largely resembled that of NATA. Low R values of between 0.02-0.34 were observed for proteins under native conditions, which is consistent with the general buried character of tryptophan residues. R increased to 0.6-0.9 after unfolding with denaturants or extensive proteolysis and decreased to close to the original value after refolding. The equilibrium unfolding transitions of proteins expressed as R largely resembled the transitions measured using other physical parameters. R appears to be a more sensitive index for monitoring the hydrophobic environment of tryptophans in protein compared to parameters like emission maxima or intensity of underivatised spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号