首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Stanton TB 《Anaerobe》2007,13(2):43-49
Gene transfer agents (GTAs) are novel mechanisms for bacterial gene transfer. They resemble small, tailed bacteriophages in ultrastructure and act like generalized transducing prophages. In contrast to functional prophages, GTAs package random fragments of bacterial genomes and incomplete copies of their own genomes. The packaged DNA content is characteristic of the GTA and ranges in size from 4.4 to 13.6kb. GTAs have been reported in species of Brachyspira, Methanococcus, Desulfovibrio, and Rhodobacter. The best studied GTAs are VSH-1 of the anaerobic, pathogenic spirochete Brachyspira hyodysenteriae and RcGTA of the nonsulfur, purple, photosynthetic bacterium Rhodobacter capsulatus. VSH-1 and RcGTA have likely contributed to the ecology and evolution of these bacteria. The existence of GTAs in phylogenetically diverse bacteria suggests GTAs may be more common in nature than is now appreciated.  相似文献   

5.
To further develop genetic techniques for the enteropathogen Brachyspira hyodysenteriae, the gyrB gene of this spirochete was isolated from a lambdaZAPII library of strain B204 genomic DNA and sequenced. The putative protein encoded by this gene exhibited up to 55% amino acid sequence identity with GyrB proteins of various bacterial species, including other spirochetes. B. hyodysenteriae coumermycin A(1)-resistant (Cn(r)) mutant strains, both spontaneous and UV induced, were isolated by plating B204 cells onto Trypticase soy blood agar plates containing 0.5 microg of coumermycin A(1)/ml. The coumermycin A(1) MICs were 25 to 100 microg/ml for the resistant strains and 0.1 to 0.25 microg/ml for strain B204. Four Cn(r) strains had single nucleotide changes in their gyrB genes, corresponding to GyrB amino acid changes of Gly(78) to Ser (two strains), Gly(78) to Cys, and Thr(166) to Ala. When Cn(r) strain 435A (Gly(78) to Ser) and Cm(r) Km(r) strain SH (DeltaflaA1::cat Deltanox::kan) were cultured together in brain heart infusion broth containing 10% (vol/vol) heat-treated (56 degrees C, 30 min) calf serum, cells resistant to chloramphenicol, coumermycin A(1), and kanamycin could be isolated from the cocultures after overnight incubation, but such cells could not be isolated from monocultures of either strain. Seven Cn(r) Km(r) Cm(r) strains were tested and were determined to have resistance genotypes of both strain 435A and strain SH. Cn(r) Km(r) Cm(r) cells could not be isolated when antiserum to the bacteriophage-like agent VSH-1 was added to cocultures, and the numbers of resistant cells increased fivefold when mitomycin C, an inducer of VSH-1 production, was added. These results indicate that coumermycin resistance associated with a gyrB mutation is a useful selection marker for monitoring gene exchange between B. hyodysenteriae cells. Gene transfer readily occurs between B. hyodysenteriae cells in broth culture, a finding with practical importance. VSH-1 is the likely mechanism for gene transfer.  相似文献   

6.
Serpulina hyodysenteriae B204 cells treated with mitomycin (20 microg of mitomycin/ml of culture broth) lysed and released bacteriophages. Bacteriophage particles, precipitated by using polyethylene glycol and purified by CsC1 density gradient ultracentrifugation, had a buoyant density of 1.375 g/cm3 and consisted of a head (45-nm diameter) and an ultrastructurally simple (noncontractile) tail (64 by 9 nm) composed of at least 13 proteins with molecular masses ranging between 13 and 101 kDa. The purified bacteriophage has been designated VSH-1 (VSH for virus of S. hyodysenteriae). VSH-1 was incapable of lytic growth on any of five intestinal spirochete strains, representing three Serpulina species. VSH-1 nucleic acid was determined to be approximately 7.5 kb in size and to be linear, double-stranded DNA based on differential staining with acridine orange, DNase I sensitivity, electrophoretic mobility, and contour length as measured by electron microscopy. Phage DNA digested by the restriction enzymes SspI, AseI, EcoRV, and AflII gave electrophoretic banding patterns nearly identical to those of digested chromosomal DNA from S. hyodysenteriae. Additionally, VSH-1 DNA fragments hybridized with probes complementary to S. hyodysenteriae chromosomal genes nox and flaA1. When purified bacteriophages induced from cultures of S. hyodysenteriae A203 (deltaflaA1 593-762::cat) were added to growing cells of strain A216 (deltanox 438-760::kan), transductants (Cmr Kmr) were obtained at a frequency of 1.5 x l0(-6) per phage particle (enumerated by electron microscopy). These findings indicate that induced VSH-1 virions package DNA of S. hyodysenteriae and are capable of transferring host genes between cells of that spirochete. To our knowledge, this is the first report of genetic transduction of a spirochete.  相似文献   

7.
8.
Polymorphism in Brucella spp. due to highly repeated DNA.   总被引:11,自引:4,他引:7       下载免费PDF全文
The species of Brucella are very closely related, but Brucella ovis does not express detectable amounts of a protein, designated BCSP31, that is common to the other species. We studied the lack of expression of BCSP31 by Southern analysis. DNAs from the B. ovis culture collection strains and field isolates were probed with a 1.3-kb HindIII fragment encoding BCSP31 of Brucella abortus. The probe hybridized to a 1.6-kb HindIII fragment of all B. ovis strains tested, showing that the gene is present in B. ovis but occurs on a larger restriction fragment. DNA linkage studies and restriction mapping of the cloned polymorphic region of B. ovis showed that the polymorphism was due to a DNA insertion of approximately 0.9 kb at a site downstream of the BCSP31-coding region. When the 1.6-kb polymorphic B. ovis fragment was used to probe a HindIII Southern blot of cellular DNA of strains of B. ovis and of B. abortus, at least 24 fragments of B. ovis and 6 fragments of B. abortus hybridized to the inserted DNA. Specimens of B. ovis collected over a 30-year period on two continents had similar hybridization patterns. The large difference between B. ovis and B. abortus in the number of copies of the repeated DNA is interesting in the context of the closeness of the Brucella species.  相似文献   

9.
《Anaerobe》1999,5(5):539-546
Brachyspira (Serpulina) hyodysenteriae cells consume oxygen during growth under a 1%O2:99%N2atmosphere. A major mechanism of O2metabolism by this anaerobic spirochete is the enzyme NADH oxidase (EC 1.6.99.3). In these investigations, the NADH oxidase gene (nox) of B. hyodysenteriae strain B204 was cloned, expressed in Escherichia coli, and sequenced. By direct cloning of aHind III-digested DNA fragment which hybridized with a nox DNA probe and by amplification of B204 DNA through the use of inverse PCR techniques, overlapping portions of the nox gene were identified and sequenced. The nox gene and flanking chromosome regions (1.7 kb total) were then amplified and cloned into plasmid pCRII. Lysates of E. coli cells transformed with this recombinant plasmid expressed NADH oxidase activity (1.1 μmol NADH oxidized/min/mg protein) and contained a protein reacting with swine antiserum raised against purified B. hyodysenteriae NADH oxidase. The nox ORF (1.3 kb) encodes a protein with a predicted molecular mass of 50 158 kDa. The B. hyodysenteriae NADH oxidase shares significant (46%) amino acid sequence identity and common functional domains with the NADH oxidases of Enterococcus faecalis and Streptococcus mutans, suggesting a common evolutionary origin for these proteins. Cloning of the B. hyodysenteriae nox gene is an important step towards the goal of generating B. hyodysenteriae mutant strains lacking NADH oxidase and for investigating the significance of NADH oxidase in the physiology and pathogenesis of this anaerobic spirochete.  相似文献   

10.
AIMS: To develop an assay to simultaneously detect Lawsonia intracellularis, Brachyspira hyodysenteriae and Brachyspira pilosicoli in pig faeces. METHODS AND RESULTS: A multiplex-polymerase chain reaction (M-PCR) was designed to amplify a 655-base pair (bp) portion of the L. intracellularis 16S rRNA gene, a 354-bp portion of the B. hyodysenteriae NADH oxidase gene, and a 823-bp portion of the B. pilosicoli 16S rRNA gene. Specificity was assessed using 80 strains of Brachyspira spp. and 30 other enteric bacteria. Bacterial DNA was extracted from faeces using the QIAamp DNA Stool Mini Kit. The M-PCR was tested in parallel with culture and/or PCR on 192 faecal samples from eight piggeries. Faeces also were seeded with known cell concentrations of the three pathogenic species, and the limits of detection of the M-PCR tested. The M-PCR was specific, with limits of detection of 10(2)-10(3) cells of the respective species per gram of faeces. CONCLUSIONS: The M-PCR is a rapid, sensitive and specific test for detecting three important enteric bacterial pathogens of pigs. SIGNIFICANCE AND IMPACT OF THE STUDY: The availability of a new diagnostic M-PCR will allow rapid detection and control of three key porcine enteric pathogens.  相似文献   

11.
A DNA fragment encoding a hemolytic factor was cloned from the parasitic spirochete Leptospira interrogans serovar autumnalis strain Congo 21-543. Initial clones were isolated by screening a genomic library in pBR322 in Escherichia coli for hemolytic activity. Hemolytic activity was coded by a 4.5 kilobase BamHI-HindIII fragment. Southern hybridization with DNAs from other strains of Leptospira using this gene as a probe showed that DNAs from non-parasitic strains failed to hybridize with the probe, whereas those from all parasitic strains tested had the sequence which hybridize to the probe.  相似文献   

12.
Spirochetes have complex life cycles and are associated with a number of diseases in humans and animals. Despite their significance as pathogens, spirochete genetics are in their early stages. However, gene inactivation has been achieved in Borrelia burgdorferi, Brachyspira hyodysenteriae, and Treponema denticola. Here, we review methods that have been used in spirochetes for gene inactivation and DNA exchange, with a primary focus on B. burgdorferi. We also describe factors influencing electrotransformation in B. burgdorferi. In summary, optimal transformation frequencies are obtained with log phase bacteria, large amounts of DNA (up to 50 microg per transformation), and high field strength (12.5-37.5 kV/cm). Infectious B. burgdorferi isolates transform with frequencies 100-fold lower than those found for high passage, non-infectious strains. Surface characteristics of the bacteria, which often correlate with infectivity, are among the obstacles to effective transformation by electroporation.  相似文献   

13.
A gene involved in quinate metabolism was cloned from Xanthomonas campestris pv. juglandis strain C5. The gene, qumA, located on a 4. 2-kb KpnI-EcoRV fragment in plasmid pQM38, conferred quinate metabolic activity to X. c. pv. celebensis. Tn3-spice insertional analyses further located the qumA gene on a region of about 3.0 kb within pQM38. Nucleotide sequencing of this 3.0-kb fragment reveals that the coding region of qumA is 2373 bp, the deduced amino acid sequence of which closely resembles a pyrrolo-quinoline quinone-dependent quinate dehydrogenase of Acinetobacter calcoaceticus. A 0.7 kb SalI-PstI fragment internal to qumA was used as a probe to hybridize against total genomic DNA from 43 pathovars of X. campestris. The fragment hybridized only to total genomic DNA from the four pathovars of DNA homology group 6, X. c. pv. celebensis, X. c. pv. corylina, X. c. pv. juglandis and X. c. pv. pruni, and from X. c. pv. carotae, which belongs to DNA homology group 5. This 0.7 kb fragment was also used as a probe to hybridize BamHI-digested total genomic DNAs from the four pathovars of DNA homology group 6 and X. c. pv. carotae. The restriction fragment length polymorphism pattern of DNA homology group 6 was different from that of X. c. pv. carotae. The probe hybridized to a 5.7-kb BamHI fragment in all four pathovars of group 6 and to a 6.1-kb BamHI fragment in three of four pathovars. It hybridized only to a 9. 9-kb BamHI fragment in X. c. pv. carotae. Quinate metabolism has previously been reported as a phenotypic property specific to X. campestris DNA homology group 6. Accordingly, a combination of the quinate metabolism phenotypic test and Southern hybridization using a qumA-derived probe will be very useful in the identification of pathovars in DNA homology group 6.  相似文献   

14.
Two novel Brachyspira hyodysenteriae-specific DNA fragments, designated as Bh100 and Bh400, were identified using representational difference analysis. To isolate the fragments the combined DNA of the Brachyspira pilosicoli, Brachyspira intermedia, Brachyspira murdochii and Brachyspira innocens reference strains was subtracted from the genome of B. hyodysenteriae strain B204. Both fragments were present in a single copy and mapped to different positions on the genome of B. hyodysenteriae B78(T). Larger fragments encompassing the continuous open reading frames (ORF) of Bh100 and Bh400 were cloned and analysed. Whereas the ORF of 2130 bp encompassing Bh100 did not show homology to any known bacterial protein, Bh400 was part of a putative operon with significant homology to the phosphotransferase system of Bacillus subtilis.  相似文献   

15.
Traditional culture and biochemical tests (CBT) were compared with PCR for sensitivity and detection of Brachyspira hyodysenteriae and Brachyspira pilosicoli in seeded faeces and clinical samples from diarrhoeic pigs. A duplex PCR system was developed based on primers detecting the tlyA-gene of B. hyodysenteriae and the 16S rRNA-gene of B. pilosicoli. Sensitivities for the PCR system were determined on seeded faeces, using DNA that had been recovered from primary cultures or extracted directly from faeces. Compared to CBT, PCR applied to DNA extracted directly from faeces lowered the sensitivity by a factor of 1000 to 10,000. B. hyodysenteriae and B. pilosicoli detection was compared for CBT and PCR using 200 clinical samples. CBT detected more B. hyodysenteriae isolates in the clinical samples than PCR, but fewer B. pilosicoli positive samples. An atypical strongly haemolytic isolate was detected only by CBT.  相似文献   

16.
The chromosomal locations of the genes for the common alpha subunit of the glycoprotein hormones and the beta subunit of chorionic gonadotropin in humans and mice have been determined by restriction enzyme analysis of DNA isolated from somatic cell hybrids. The CG alpha gene (CGA), detected as a 15-kb BamHI fragment in human DNA by hybridization to CG alpha cDNA, segregated with the chromosome 6 enzyme markers ME1 (malic enzyme, soluble) and SOD2 (superoxide dismutase, mitchondrial) and an intact chromosome 6 in human-rodent hybrids. Cell hybrids containing portions of chromosome 6 allowed the localization of CGA to the q12 leads to q21 region. The greater than 30- and 6.5-kb BamHI CGB fragments hybridizing to human CG beta cDNA segregated concordantly with the human chromosome 19 marker enzymes PEPD (peptidase D) and GPI (glucose phosphate isomerase) and a normal chromosome 19 in karyotyped hybrids. A KpnI-HindIII digest of cell hybrid DNAs indicated that the multiple copies of the CG beta gene are all located on human chromosome 19. In the mouse, the alpha subunit gene, detected by a mouse thyrotropin (TSH) alpha subunit probe, and the CG beta-like sequences (CG beta-LH beta), detected by the human CG beta cDNA probe, are on chromosomes 4 and 7, respectively.  相似文献   

17.
Atypical, strongly haemolytic porcine isolates of intestinal spirochaetes differing genetically from Brachyspira hyodysenteriae were identified and characterized. The isolates were subjected to culture and biochemical tests, antimicrobial susceptibility testing and molecular analyses. None of four species-specific polymerase chain reaction systems targeting genes of B. hyodysenteriae gave a positive reaction. All the atypical porcine isolates were identical in their partial 16S rRNA and nox gene sequences with a previously described isolate from a mallard (Anas platyrhynchos), and differed only slightly from another mallard isolate. All these isolates were distinctly different from all currently recognized Brachyspira species. A challenge study was carried out using recently weaned pigs. Clinical signs and macroscopic changes consistent with swine dysentery were seen both in pigs given the atypical porcine isolate and in control pigs given the reference strain of B. hyodysenteriae (B204(R)). Pigs given the genetically similar isolate from a mallard became colonized and diarrhoea was observed. This is the first study indicating that Brachyspira isolates from mallard can infect pigs and induce diarrhoea. We propose that this atypical spirochaete genotype should be regarded as a new species within the genus Brachyspira, and be provisionally designated 'Brachyspira suanatina' sp. nov.  相似文献   

18.
A combined physical and genetic map of the Serpulina hyodysenteriae B78T genome was constructed by using pulsed-field gel electrophoresis and DNA blot hybridizations. The S. hyodysenteriae genome is a single circular chromosome about 3.2 Mb in size. The physical map of the chromosome was constructed with the restriction enzymes BssHII, EclXI, NotI, SalI, and SmaI. The physical map was used to constructed a linkage map for genes encoding rRNA, flagellum subunit proteins, DNA gyrase, NADH oxidase, and three distinct hemolysins. Several flaB2-related loci, encoding core flagellum subunit proteins, were detected and are dispersed around the chromosome. The rRNA gene organization in S. hyodysenteriae is unusual. S. hyodysenteriae has one gene each for 5S (rrf), 16S (rrs), and 23S (rrl) rRNAs. The rrf and rrl genes are closely linked (within 5 kb), while the rrs gene is about 860 kb from the other two rRNA genes. Using a probe for the S. hyodysenteriae gyrA gene, we identified a possible location for the chromosomal replication origin. The size and genetic organization of the S. hyodysenteriae chromosome are different from those of previously characterized spirochetes.  相似文献   

19.
20.
Brachyspira (Serpulina) hyodysenteriae, the etiologic agent of swine dysentery, uses the enzyme NADH oxidase to consume oxygen. To investigate possible roles for NADH oxidase in the growth and virulence of this anaerobic spirochete, mutant strains deficient in oxidase activity were isolated and characterized. The cloned NADH oxidase gene (nox; GenBank accession no. U19610) on plasmid pER218 was inactivated by replacing 321 bp of coding sequence with either a gene for chloramphenicol resistance (cat) or a gene for kanamycin resistance (kan). The resulting plasmids, respectively, pCmDeltaNOX and pKmDeltaNOX, were used to transform wild-type B. hyodysenteriae B204 cells and generate the antibiotic-resistant strains Nox-Cm and Nox-Km. PCR and Southern hybridization analyses indicated that the chromosomal wild-type nox genes in these strains had been replaced, through allelic exchange, by the inactivated nox gene containing cat or kan. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblot analysis revealed that both nox mutant cell lysates were missing the 48-kDa Nox protein. Soluble NADH oxidase activity levels in cell lysates of Nox-Cm and Nox-Km were reduced 92 to 96% compared to the activity level in parent strain B204. In an aerotolerance test, cells of both nox mutants were at least 100-fold more sensitive to oxygen exposure than were cells of the wild-type parent strain B204. In swine experimental infections, both nox mutants were less virulent than strain B204 in that fewer animals were colonized by the mutant cells and infected animals displayed mild, transient signs of disease, with no deaths. These results provide evidence that NADH oxidase serves to protect B. hyodysenteriae cells against oxygen toxicity and that the enzyme, in that role, contributes to the pathogenic ability of the spirochete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号