首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of chromosome inheritance is essential to ensure proper transmission of genetic information. To accomplish accurate genome segregation, cells organize their chromosomes and actively separate them prior to cytokinesis. In Bacillus subtilis the Spo0J protein is required for accurate chromosome segregation and it regulates the developmental switch from vegetative growth to sporulation. Spo0J is a DNA-binding protein that recognizes at least eight identified parS sites located near the origin of replication. As judged by fluorescence microscopy, Spo0J forms discrete foci associated with the oriC region of the chromosome throughout the cell cycle. In an attempt to determine the mechanisms utilized by Spo0J to facilitate productive chromosome segregation, we have investigated the DNA binding activity of Spo0J. In vivo we find Spo0J associates with several kilobases of DNA flanking its specific binding sites (parS) through a parS-dependent nucleation event that promotes lateral spreading of Spo0J along the chromosome. Using purified components we find that Spo0J has the ability to coat non-specific DNA substrates. These 'Spo0J domains' provide large structures near oriC that could potentially demark, organize or localize the origin region of the chromosome.  相似文献   

2.
3.
4.
Sporulating cells of Bacillus subtilis undergo a highly polarized cell division and possess a specialized mechanism to move the oriC region of the chromosome close to the cell pole before septation. DivIVA protein, which localizes to the cell pole, and the Soj and Spo0J proteins, which associate with the chromosome, are part of the mechanism that delivers the chromosome to the cell pole. A sporulation-specific protein, RacA, encodes a third DNA-binding protein, which acts in conjunction with Soj and Spo0J to effect efficient polar chromosome segregation. divIVA mutants and soj racA double mutants have an unexpected phenotype in which specific markers to the left and right of oriC can be captured in the prespore compartment but the central oriC region is efficiently excluded. This 'residual' trapping requires Spo0J protein. We suggest that the Soj RacA DivIVA system is required to extract the oriC region from its position determined by the vegetative chromosome segregation machinery and anchor it to the cell pole.  相似文献   

5.
Spo0J (ParB) of Bacillus subtilis is a DNA-binding protein that belongs to a conserved family of proteins required for efficient plasmid and chromosome partitioning in many bacterial species. We found that Spo0J contributes to the positioning of the chromosomal oriC region, but probably not by recruiting the origin regions to specific subcellular locations. In wild-type cells during exponential growth, duplicated origin regions were generally positioned around the cell quarters. In a spo0J null mutant, sister origin regions were often closer together, nearer to midcell. We found, by using a Spo0J-green fluorescent protein [GFP] fusion, that the subcellular location of Spo0J was a consequence of the chromosomal positions of the Spo0J binding sites. When an array of binding sites (parS sites) were inserted at various chromosomal locations in the absence of six of the eight known parS sites, Spo0J-GFP was no longer found predominantly at the cell quarters, indicating that Spo0J is not sufficient to recruit chromosomal parS sites to the cell quarters. spo0J also affected chromosome positioning during sporulation. A spo0J null mutant showed an increase in the number of cells with some origin-distal regions located in the forespore. In addition, a spo0J null mutation caused an increase in the number of foci per cell of LacI-GFP bound to arrays of lac operators inserted in various positions in the chromosome, including the origin region, an increase in the DNA-protein ratio, and an increase in origins per cell, as determined by flow cytometry. These results indicate that the spo0J mutant produced a significant proportion of cells with increased chromosome content, probably due to increased and asynchronous initiation of DNA replication.  相似文献   

6.
Control of DNA replication initiation is essential for bacterial cells to co-ordinate the faithful replication and segregation of their genetic material. The Bacillus subtilis ATPase Soj is a dynamic protein that regulates DNA replication initiation by either inhibiting or activating the DNA replication initiator protein DnaA. Here we report that the key event which switches Soj regulatory activity is a transition in its oligomeric state from a monomer to an ATP-dependent homodimer capable of DNA binding. We show that the DNA binding activity of the Soj dimer is required both for activation of DNA replication initiation and for interaction with Spo0J. Finally, we demonstrate that Spo0J inhibits Soj dimerization by stimulating Soj ATPase activity. The data provide a molecular explanation for the dichotomous regulatory activities of Soj, as well as assigning unique Soj conformations to distinct cellular localization patterns. We discuss how the regulation of Soj ATPase activity by Spo0J could be utilized to control the initiation of DNA replication during the cell cycle.  相似文献   

7.
8.
9.
In most bacteria two vital processes of the cell cycle: DNA replication and chromosome segregation overlap temporally. The action of replication machinery in a fixed location in the cell leads to the duplication of oriC regions, their rapid separation to the opposite halves of the cell and the duplicated chromosomes gradually moving to the same locations prior to cell division. Numerous proteins are implicated in co-replicational DNA segregation and they will be characterized in this review. The proteins SeqA, SMC/MukB, MinCDE, MreB/Mbl, RacA, FtsK/SpoIIIE playing different roles in bacterial cells are also involved in chromosome segregation. The chromosomally encoded ParAB homologs of active partitioning proteins of low-copy number plasmids are also players, not always indispensable, in the segregation of bacterial chromosomes.  相似文献   

10.
We examined the intracellular distribution of Bacillus subtilis Dna-initiation proteins by immunofluorescence microscopy to visualize the initiation complex of replication in vivo. DnaA was distributed throughout the cytoplasm, but both DnaB and DnaI were always detected as foci during the cell-division cycle. Interaction of DnaI with the DnaC helicase by the yeast two-hybrid assay suggests that DnaI acts as a helicase loader. The number of DnaB and DnaI foci within the cell exceeded that of oriC. Although the foci were not always co-localized with oriC, they seemed to be localized near the outer or inner edges of the nucleoids at initiation of replication. When the replication cycle was synchronized in cells using a temperature-sensitive dnaA mutant, duplication of the oriC region was observed predominantly near an edge of the nucleoid. Before initiation occurred, each one of the DnaB and DnaI foci was frequently observed near there. Furthermore, DnaX-GFP (DnaX is a component of DNA polymerase III) foci were detected near either of the edges of the nucleoids at the onset of replication. These results suggest that the replisome is recruited into oriC near either edge of the nucleoids to initiate chromosome replication in B. subtilis.  相似文献   

11.
Recent advances have completely overturned the classical view of chromosome segregation in bacteria. Far from being a passive process involving gradual separation of the chromosomes, an active, possibly mitotic-like machinery is now known to exist. Soon after the initiation of DNA replication, the newly replicated copies of the oriC region, behaving rather like eukaryotic centromeres, move rapidly apart towards opposite poles of the cell. They then determine the positions that will be taken up by the newly formed sister nucleoids when DNA replication has been completed. Thus, the gradual expansion of the diffuse nucleoid camouflages an underlying active mechanism. Several genes involved in chromosome segregation in bacteria have now been defined; their possible functions are discussed.  相似文献   

12.
Following initiation of chromosomal replication in Escherichia coli, newly initiated origins (oriCs) are prevented from further initiations by a mechanism termed sequestration. During the sequestration period (which lasts about one-third of a cell cycle), the origins remain hemimethylated. The SeqA protein binds hemimethylated oriC in vitro. In vivo, the absence of SeqA causes overinitiation and strongly reduces the duration of hemimethylation. The pattern of immunostained SeqA complexes in vivo suggests that SeqA has a role in organizing hemimethylated DNA at the replication forks. We have examined the effects of overexpressing SeqA under different cellular conditions. Our data demonstrate that excess SeqA significantly increases the time oriC is hemimethylated following initiation of replication. In some cells, sequestration continued for more than one generation and resulted in inhibition of primary initiation. SeqA overproduction also interfered with the segregation of sister nucleoids and caused a delay in cell division. These results suggest that SeqA's function in regulation of replication initiation is linked to chromosome segregation and possibly cell division.  相似文献   

13.
Soj (ParA) and Spo0J (ParB) of Bacillus subtilis belong to a conserved family of proteins required for efficient plasmid and chromosome partitioning in many bacterial species. Unlike most Par systems, for which intact copies of both parA and parB are required for the Par system to function, inactivating soj does not cause a detectable chromosome partitioning phenotype whereas inactivating spo0J leads to a 100-fold increase in the production of anucleate cells. This suggested either that Soj does not function like other ParA homologues, or that a cellular factor might compensate for the absence of soj. We found that inactivating smc, the gene encoding the structural maintenance of chromosomes (SMC) protein, unmasked a role for Soj in chromosome partitioning. A soj null mutation dramatically enhanced production of anucleate cells in an smc null mutant. To look for effects of a soj null on other phenotypes perturbed in a spo0J null mutant, we analysed replication initiation and origin positioning in (soj-spo0J)+, Deltasoj, Deltaspo0J and Delta(soj-spo0J) cells. All of the mutations caused increased initiation of replication and, to varying extents, affected origin positioning. Using a new assay to measure separation of the chromosomal origins, we found that inactivating soj, spo0J or both led to a significant defect in separating replicated sister origins, such that the origins remain too close to be spatially resolved. Separation of a region outside the origin was not affected. These results indicate that there are probably factors helping to pair sister origin regions for part of the replication cycle, and that Soj and Spo0J may antagonize this pairing to contribute to timely separation of replicated origins. The effects of Deltasoj, Deltaspo0J and Delta(soj-spo0J) mutations on origin positioning, chromosome partitioning and replication initiation may be a secondary consequence of a defect in separating replicated origins.  相似文献   

14.
We report an efficient, controllable, site-specific replication roadblock that blocks cell proliferation, but which can be rapidly and efficiently reversed, leading to recovery of viability. Escherichia coli replication forks of both polarities stalled in vivo within the first 500 bp of a 10 kb repressor-bound array of operator DNA-binding sites. Controlled release of repressor binding led to rapid restart of the blocked replication fork without the participation of homologous recombination. Cytological tracking of fork stalling and restart showed that the replisome-associated SSB protein remains associated with the blocked fork for extended periods and that duplication of the fluorescent foci associated with the blocked operator array occurs immediately after restart, thereby demonstrating a lack of sister cohesion in the region of the array. Roadblocks positioned near oriC or the dif site did not prevent replication and segregation of the rest of the chromosome.  相似文献   

15.
The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated.  相似文献   

16.
Wu LJ  Errington J 《The EMBO journal》2002,21(15):4001-4011
The cis-acting sequences required for chromosome segregation are poorly understood in most organisms, including bacteria. Sporulating cells of Bacillus subtilis undergo an unusual asymmetric cell division during which the origin of DNA replication (oriC) region of the chromosome migrates to an extreme polar position. We have now characterized the sequences required for this migration. We show that the previously characterized soj-spo0J chromosome segregation system is not essential for chromosome movement to the cell pole, so this must be driven by an additional segregation mechanism. Observations on a large set of precisely engineered chromosomal inversions and translocations have identified a polar localization region (PLR), which lies approximately 150-300 kbp to the left of oriC. Surprisingly, oriC itself has no involvement in this chromosome segregation system. Dissection of the PLR showed that it has internal functional redundancy, reminiscent of the large diffuse centromeres of most eukaryotic cells.  相似文献   

17.
The ability to visualise specific genes and proteins within bacterial cells is revolutionising knowledge of chromosome segregation. The essential elements appear to be the driving force behind DNA replication, which occurs at fixed cellular positions, the condensation of newly replicated DNA by a chromosome condensation machine located at the cell 1/4 and 3/4 positions, and molecular machines that act at midcell to allow chromosome separation after replication and movement of the sister chromosomes away from the division septum prior to cell division. This review attempts to provide a perspective on current views of the bacterial chromosome segregation mechanism and how it relates to other cellular processes.  相似文献   

18.
19.
We have characterized the yyaA gene of Bacillus subtilis, located near the origin of chromosome replication (oriC). Its protein product is similar to the Spo0J protein, which belongs to the ParB family of chromosome- and plasmid-partitioning proteins. Insertional inactivation of the yyaA gene had no apparent effect on chromosome organization and partitioning during vegetative growth or sporulation. Subcellular localization of YyaA by immunofluorescence microscopy indicated that it colocalizes with the nucleoid, and gel retardation studies confirmed that YyaA binds relatively nonspecifically to DNA. Overexpression of yyaA caused a sporulation defect characterized by the formation of multiple septa within the cell. This phenotype indicates that YyaA may have a regulatory role at the onset of sporulation.  相似文献   

20.
Lee BH  Kiburz BM  Amon A 《Current biology : CB》2004,14(24):2168-2182
BACKGROUND: The meiotic cell cycle, the cell division cycle that leads to the generation of gametes, is unique in that a single DNA replication phase is followed by two chromosome segregation phases. During meiosis I, homologous chromosomes are segregated, and during meiosis II, as in mitosis, sister chromatids are partitioned. For homolog segregation to occur during meiosis I, physical linkages called chiasmata need to form between homologs, sister chromatid cohesion has to be lost in a stepwise manner, and sister kinetochores must attach to microtubules emanating from the same spindle pole (coorientation). RESULTS: Here we show that the meiosis-specific factor Spo13 functions in two key aspects of meiotic chromosome segregation. In cells lacking SPO13, cohesin, which is the protein complex that holds sister chromatids together, is not protected from removal around kinetochores during meiosis I but is instead lost along the entire length of the chromosomes. We furthermore find that Spo13 promotes sister kinetochore coorientation by maintaining the monopolin complex at kinetochores. In the absence of SPO13, Mam1 and Lrs4 disassociate from kinetochores prematurely during pro-metaphase I and metaphase I, resulting in a partial defect in sister kinetochore coorientation in spo13 Delta cells. CONCLUSIONS: Our results indicate that Spo13 has the ability to regulate both the stepwise loss of sister chromatid cohesion and kinetochore coorientation, two essential features of meiotic chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号