首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
比较研究了4种不同水分生态型植物在不同水分胁迫下的光合作用、叶片含水量和气孔阻力等生理指标的反应.结果表明,不同水分生态型植物抵御干旱的机制是不同的.中生植物主要是通过增加气孔阻力限制蒸腾失水,而旱生植物则依靠高浓度的细胞原生质减少水分的散失,后者保水效率远高于前者.植物从中生种到旱生种,生理特性亦显示出规律性的种间差异,叶片含水量和气孔阻力水平降低,而单位叶面积的净光合速率增加.  相似文献   

2.
刘英  雷少刚  程林森  程伟  卞正富 《生态学报》2018,38(9):3069-3077
采煤塌陷引起的土壤环境因子的变化对矿区植物生长的影响越来越受到人们的关注,气孔导度、蒸腾与光合作用作为环境变化响应的敏感因子,研究植物气孔导度、蒸腾与光合作用的变化是揭示荒漠矿区自然环境变化及其规律的重要手段之一。研究采煤塌陷条件下植物光合生理的变化是探究煤炭开采对植物叶片水分蒸腾散失和CO_2同化速率影响的关键环节,是探讨采煤塌陷影响下植物能量与水分交换动态的基础,而采煤矿区植物叶片气孔导度、蒸腾与光合作用速率对采煤塌陷影响下土壤含水量变化的响应如何尚不清楚。选取神东煤田大柳塔矿区52302工作面为实验场地,以生态修复物种柠条为研究对象,对采煤塌陷区和对照区柠条叶片气孔导度、蒸腾和光合作用速率以及土壤体积含水量进行监测,分析了采煤塌陷条件下土壤含水量的变化以及其对柠条叶片气孔导度、蒸腾与光合作用速率的影响。结果显示:(1)煤炭井工开采在地表形成大量裂缝,破坏了土体结构,潜水位埋深降低,土壤含水量均低于沉陷初期,相对于对照区,硬梁和风沙塌陷区土壤含水量分别降低了18.61%、21.12%;(2)柠条叶片气孔导度、蒸腾和光合作用速率均与土壤含水量呈正相关关系;煤炭开采沉陷增加了地表水分散失,加剧了土壤水分胁迫程度,为了减少蒸腾导致的水分散失,柠条叶片气孔阻力增加,从而气孔导度降低,阻碍了光合作用CO_2的供应,从而导致柠条叶片光合作用速率的降低,蒸腾速率也显著降低。  相似文献   

3.
冬小麦叶片气孔导度模型水分响应函数的参数化   总被引:2,自引:0,他引:2       下载免费PDF全文
植物气孔导度模型的水分响应函数用来模拟水分胁迫对气孔导度的影响过程, 是模拟缺水环境下植物与大气间水、碳交换过程的关键算法。水分响应函数包括空气湿度响应函数和土壤湿度(或植物水势)响应函数, 该研究基于田间实验观测, 分析了冬小麦(Triticum aestivum)叶片气孔导度对不同空气饱和差和不同土壤体积含水量或叶水势的响应规律。一个土壤水分梯度的田间处理在中国科学院禹城综合试验站实施, 不同水分胁迫下的冬小麦叶片气体交换过程和气孔导度以及其他的温湿度数据被观测, 同时观测了土壤含水量和叶水势。实验数据表明, 冬小麦叶片气孔导度对空气饱和差的响应呈现双曲线规律, 变化趋势显示大约1 kPa空气饱和差是一个有用的阈值, 在小于1 kPa时, 冬小麦气孔导度对空气饱和差变化反应敏感, 而大于1 kPa后则反应缓慢; 分析土壤体积含水量与中午叶片气孔导度的关系发现, 中午叶片气孔导度随土壤含水量增加大致呈现线性增加趋势, 但在平均土壤体积含水量大于大约25%以后, 气孔导度不再明显增加, 而是维持在较高导度值上下波动; 冬小麦中午叶片水势与相应的气孔导度之间, 随着叶水势的增加, 气孔导度呈现增加趋势。根据冬小麦气孔导度对空气湿度、土壤湿度和叶水势的响应规律, 研究分别采用双曲线和幂指数形式拟合了水汽响应函数, 用三段线性方程拟合了土壤湿度响应函数和植物水势响应函数, 得到的参数可以为模型模拟冬小麦的各类水、热、碳交换过程采用。  相似文献   

4.
土壤水分变化对长白山主要树种蒙古栎幼树生长的影响   总被引:16,自引:3,他引:13  
选择长白山红松阔叶林主要优势树种蒙古栎为研究对象,人工控制3种施水量研究蒙古栎幼树形态、生物量效应和光合生理特征对土壤含水量变化的响应.结果表明,不同土壤含水量变化显著影响蒙古栎叶片、枝、根的生物量及其分配格局和叶片光合气体交换特征.水分胁迫改变幼树树冠结构,抑制幼树树高、地径、叶片大小、地上和地下生物量;同时,蒙古栎幼树根冠生物量比随着土壤水分含量的减少显著提高;供水量减少对幼树净光合速率、CO2利用率和碳利用率等特征有显著的负向影响;而叶片气孔导度、蒸腾速率和水分利用率对不同土壤含水量反应较复杂,只在土壤含水量较低时,幼树气孔导度、蒸腾速率明显降低,叶片水分利用率升高,表现出蒙古栎树种是干旱可变植物,长期水分胁迫可提高树种的耐旱能力.  相似文献   

5.
水分胁迫下,盆栽冬小麦根干重和根长密度呈直线正相关。鉴于根长密度反映了土壤中根系最活跃的部分[5],是研究植物根系吸收水分和养分的最优参数之一[6],本文用之研究了它与地上部生物量、净同化速率、叶水势和叶片相对含水量、气孔阻力和蒸腾速率的关系。结果表明,根长密度与净同化速率和地上部干重呈直线负相关,与叶水势和叶片相对含水量呈直线正相关;与气孔阻力呈直线负相关,与蒸腾速率呈直线正相关。为实验室进行冬小麦生长控制与生理特性控制提供了一定的基础。  相似文献   

6.
养分对旱地小麦水分腔迫的生理补偿效应   总被引:52,自引:3,他引:49  
利用不同深度渗漏池供水差异所造成的水分胁迫,分期测定冬小麦叶片的净光合速率、气孔阻力、叶肉胞间CO2浓度、蒸腾强度、叶绿素含量和叶片吸光强度。研究养分对小麦水分胁迫的生理补偿效应。结果表明,水分腔迫后,气孔阻力增加,叶绿素含量和净光合速率显著下降。但在水分胁迫时施用氮肥,蒸腾速率减弱,叶绿素含量,叶片吸光强度和净光合速率增加,因而,短时水分利用效率显著提高。这表明,因水分胁迫导致净光合速率和短时水  相似文献   

7.
研究了水分胁迫下不同花生抗旱品种叶片气孔开度和相对含水量变化,分析TAhNCEDI基因和AhNCED1蛋白进行表达情况,发现水分胁迫下,叶片相对含水量下降,叶片气孔开度降低,叶片AhNCED1基因和AhNCED1蛋白表达增强。抗旱品种较之敏旱品种在响应水分胁迫初期时(1h)AhNCED1基因和AhNCED1蛋白表达较强,叶片气孔开度下降较快,引发气孔关闭,其叶片相对含水量较高,保水能力较强。ABA合成抑制剂naproxen处理后,叶片AhNCED1基因和AhNCED1蛋白的表达减弱,气孔开度快速增加,水分胁迫下花生叶片AhNCED1蛋白表达可能影响气孔开闭。  相似文献   

8.
土壤干旱期间墨兰的水分生理变化   总被引:6,自引:0,他引:6  
研究了盆栽墨兰〔Cymbidiumsinense(Andr.)Willd.]在不同土壤含水量情况下的水分生理变化。不同叶龄的叶片对于干旱反应不同,一年生叶比二年生叶敏感。在叶片含水量、叶片水势、叶绿素含量、蒸腾速率和气孔阻力等生理参数中,后两者对干旱反应最灵敏。所以,一年生幼叶的蒸滕速率和气孔阻力可作为指标去判断墨兰植株水分供应情况。墨兰在土壤持水力44.2%时,相对透性较小,生长正常,一年生动叶的蒸腾速率和气孔阻力分别是3.36μg·cm ̄(-2)·s ̄(-1)和7.08s·cm ̄(-1);当土壤干旱,持水力降至22.5%时,相对透性增大39%,说明细胞已经受旱害,该时的蒸腾速率降至0.95μg、cm ̄(-2)·s ̄(-1),气孔阻力升为22.25s·cm ̄(-1)。可以认为,墨兰的土壤临界水分是在土壤持水力44%—22%之间。  相似文献   

9.
为了探讨凝结水对植物生长的作用,该文研究了干旱处理下模拟凝结水对羊草(Leymus chinensis)和冰草(Agropyron cristatum)生理性状和叶片表面结构的影响。试验设计了干旱无凝结水、干旱每周发生3次和5次凝结水以及正常浇水不发生凝结水4个处理,通过超声波加湿器模拟凝结水的发生,研究凝结水对两种植物叶片相对含水量、水势、净光合速率、水分利用效率、生物量以及叶片表面结构等的影响。结果表明:凝结水显著增加了干旱胁迫下两种植物的叶片相对含水量和水势(p0.05);凝结水显著提高了冰草的净光合速率、气孔导度与蒸腾速率(p0.05);而羊草的气孔导度和蒸腾速率随凝结水的变化不明显。羊草和冰草的地上生物量和根系生物量随凝结水的发生有增加的趋势,但是各处理间差异不显著。凝结水降低了羊草和冰草黄叶数与总叶数的比值,这表明凝结水对干旱胁迫下植物叶片表面结构遭到的破损有一定的保护和修复作用。该研究证实羊草和冰草的叶片可以吸收凝结水,并对其光合作用、水分生理以及生长具有正效应。  相似文献   

10.
不同水分处理对日光温室黄瓜叶片光合特性的影响   总被引:24,自引:1,他引:23  
研究了不同土壤含水量对不同栽培茬口 (冬春茬、秋冬茬 )的日光温室黄瓜叶片的光合速率、气孔阻力、气孔结构特性及叶绿体超微结构的影响。结果表明 :随着土壤含水量的降低 ,单位黄瓜叶片面积气孔密度增加 ,气孔阻力上升 ,光合速率下降 ;叶绿体超微结构观察表明 :土壤含水量的减少明显地降低叶片细胞的叶绿体数目及每个叶绿休内的淀粉粒数。不同茬口的黄瓜其上述特性变化规律相似。  相似文献   

11.
郭彦军  倪郁  郭芸江  韩龙  唐华 《生态学报》2011,31(18):5273-5280
选用2个抗旱性不同的紫花苜蓿品种,敖汉(强抗旱)和三得利(弱抗旱),设置空气湿度(45%-55%和75%-85%)和土壤水分胁迫(75%和35%田间持水量)处理,分析紫花苜蓿叶表皮蜡质含量、组分及晶体结构、气体交换参数、水势及脯氨酸含量的变化规律。结果表明,单独土壤水分胁迫时,紫花苜蓿叶表皮蜡质晶体结构及蜡质总量无显著变化;敖汉蜡质组分中烷类、酯类含量增加,醇类含量下降;三得利醇类含量下降,烷类、酯类含量变化不显著。低空气湿度胁迫时,两品种蜡质总量无显著变化,烷类和酯类含量显著增加,醇类含量显著下降,叶表皮片状蜡质晶体结构熔融呈弥漫性,扩大了对叶表面积的覆盖,其蒸腾速率显著低于正常湿度。复合胁迫处理时,叶表皮片状蜡质晶体结构继续呈弥漫性,烷类、酯类、未知蜡质组分含量均高于单独胁迫处理,醇类含量最低,而蜡质总量除三得利显著高于对照外,其余均无显著差异。紫花苜蓿叶表皮蜡质各组分含量(除醇类)及蜡质总量与光合速率呈显著负相关,与蒸腾速率无显著相关关系。蜡质总量与叶水势呈显著正相关。总体上,敖汉蜡质总量显著高于三得利,蜡质组分中烷类物质的增加有助于提高植株的抗旱性。在复合胁迫下,强抗旱品种主要通过气孔因素控制水分散失,而弱抗旱品种通过气孔和非气孔因素共同控制植物水分散失。  相似文献   

12.
The response of gas exchange, leaf chlorophyll content, relative fluorescence to decreasing water potential and recovery was followed in European beech seedlings from two Italian populations, differing in their native precipitation amounts. A population from Sicily (southern Italy) was selected as representative of a xeric population while a population from central Italy, Abetone, represented a mesic one. Dry-matter partitioning, leaf area, hydraulic sufficiency and xylem embolism were evaluated in both well-watered control plants as well as in plants subjected to drought. With the onset of water stress, values of water potential, leaf relative water content, net photosynthesis, leaf conductance and leaf chlorophyll concentration decreased concurrently while relative fluorescence remained unchanged. The population from Sicily showed a delay in effects of the imposed drought. Within 5 days of rewatering, leaf conductance was not fully recovered while all of the other parameters recovered to control levels, in both populations. Total, shoot, stem and root dry weight tended to be higher in seedlings from Abetone, even though both populations had similar photosynthetic rates. The population from Sicily exhibited about 3% greater (even if not significant) allocation to roots than the population from Abetone. Seedlings from Abetone had higher, but not significant, leaf specific conductivity and per cent loss in hydraulic conductivity than seedlings from Sicily. Drought resulted in a reduction of hydraulic conductivity and hydraulic sufficiency in seedlings from both populations. Photosynthesis of water stressed plants from both populations appeared to be reduced primarily by carbon dioxide diffusion through stomata and perhaps secondarily by changes in chlorophyll concentration rather than by efficiency of photosystem II. The effect of hydraulic factors on gas exchange during drought and recovery was not clearly evident.  相似文献   

13.
Seedlings of Douglas-fir from seed of a number of mesic and xeric origins were grown in growth chambers and a nursery to various ages up to 16 weeks. Measurements were made to determine the effect of seedling age, growth chamber and nursery pre-conditioning, and seed source on transpiration rates under closely controlled laboratory conditions. Additional experiments were conducted on seedlings of two contrasting ecotypes to determine the effect of different pre-conditioning combinations of plant and soil water potential on seedling transpiration rates. Results show that well-watered seedlings of two mesic ecotypes show no decline in transpiration rates per unit leaf area up to 16 weeks of age while corresponding seedlings of three exeric ecotypes do decline. The growth chamber pre-conditioning results in lower seedling transpiration rates and more decline in seedling transpiration rates with increasing plant water stress than for nursery pre-conditioning. In a similar way, the xeric ecotype seedlings have more decline in transpiration rates with increasing plant water stress than do the mesic ecotype seedlings. Soil water potential influences transpiration rates through pre-conditioning effects. Seedlings which have experienced prior soil moisture stress decrease transpiration more in response to low plant water potentials than do plants which have experienced no soil moisture stress. These behavioral characteristics illustrate adaptive means by which seedlings conserve water through the interaction of genetic and preconditioning mechanisms.  相似文献   

14.
酸枣叶表皮微形态对不同生态环境的适应特征   总被引:1,自引:0,他引:1  
朱广龙  邓荣华  魏学智 《生态学报》2016,36(16):5193-5203
以生长于烟台—石家庄—宁夏—新疆不同生境形成的自然梯度干旱环境中的酸枣(Ziziphus jujuba var.spinosas)为材料,应用扫描电镜和能谱分析研究酸枣叶表皮微形态对不同自然梯度干旱环境的适应特征。结果表明:酸枣叶片的上、下表皮都有表皮毛着生且在叶脉处分布浓密;叶片表层覆盖有较厚的角质层和蜡质并形成突起,其主要成分为C、O、Ca三种元素;叶片表面气孔数量平均40个/视野且按一定规律分布。不同生境中酸枣叶片表面都分布有大量的晶体,且晶体的形态和组成成分表现出一定的生态适应特征。晶体的形状多样,有正六棱体、长六棱体、不规则片状、正方体、棒状晶体或针状,晶体的分布方式有单晶和簇晶。从烟台到新疆随干旱梯度的加剧,酸枣叶片表皮毛逐渐增多,气孔数量减少,气孔腔下陷明显,有助于植株减少蒸腾保水抗旱;晶体的体积逐渐变小,数量增多,密度增大,提升了叶片硬度及抗旱性;酸枣叶片晶体的主要成分为C、O、Ca三种元素,且随生境干旱加剧,C元素的含量逐渐增加,O和Ca元素含量依次减少,此外宁夏的晶体中还含有Si元素,进一步提升了叶片的机械性能。酸枣叶表皮微形态中表皮毛、角质层与蜡质、气孔、晶体等在形态结构、生物功能和组成成分上特异性的变化是其长期生存于不同梯度干旱生境的生态适应特征。  相似文献   

15.
BACKGROUND AND AIMS: Cell membranes are major targets of environmental stresses. Lipids are important membrane components, and changes in their composition may help to maintain membrane integrity and preserve cell compartmentation under water stress conditions. The aim of this work was to investigate the effects of water stress on membrane lipid composition and other aspects of lipid metabolism in the leaves of the model plant, Arabidopsis thaliana. METHODS: Arabidopsis thaliana (ecotype Columbia) plants were submitted to progressive drought stress by withholding irrigation. Studies were carried out in plants with hydration levels ranging from slight to very severe water deficit. Enzymatic activities hydrolysing MGDG, DGDG and PC were measured. Expression of several genes essential to lipid metabolism, such as genes coding for enzymes involved in lipid biosynthesis (MGDG synthase, DGDG synthase) and degradation (phospholipases D, lipoxygenase, patatin-like lipolytic-acylhydrolase), was studied. KEY RESULTS: In response to drought, total leaf lipid contents decreased progressively. However, for leaf relative water content as low as 47.5 %, total fatty acids still represented 61 % of control contents. Lipid content of extremely dehydrated leaves rapidly increased after rehydration. The time-course of the decrease in leaf lipid contents correlated well with the increase in lipolytic activities of leaf extracts and with the expression of genes involved in lipid degradation. Despite a decrease in total lipid content, lipid class distribution remained relatively stable until the stress became very severe. CONCLUSIONS: Arabidopsis leaf membranes appeared to be very resistant to water deficit, as shown by their capacity to maintain their polar lipid contents and the stability of their lipid composition under severe water loss conditions. Moreover, arabidopsis displayed several characteristics indicative of a so far unknown adaptation capacity to drought-stress at the cellular level, such as an increase in the DGDG : MGDG ratio and fatty acid unsaturation.  相似文献   

16.
The effects of drought on photoprotection mechanisms of three beech provenances from three contrasting climatic origins have been studied. Morphology differed among provenances, with a lower leaf area/fine roots ratio in the xeric populations (Moncayo). This characteristic allowed this provenance to respond later than the others to a drought-stress treatment. However, in desiccating leaves the stability of PSII was higher in the plants from the stressful climate of the Pyrenees (Belagoa). Drought resulted in a reduction in pigment content (except in Belagoa) with simultaneous increases in antheraxanthin, zeaxanthin and tocopherol pools. These molecules play an important photoprotective role and reached similar values in stressed leaves from the three provenances. These antioxidants also protected the leaves from paraquat-induced oxidation. It is concluded that drought tolerance in the studied xeric ecotype is based to a greater extent on morphological characteristics than on a better photoprotective system.  相似文献   

17.
The effect of increasing atmospheric CO2 concentrations on tissue water relations was examined in Betula populifolia, a common pioneer tree species of the northeastern U.S. deciduous forests. Components of tissue water relations were estimated from pressure volume curves of tree seedlings grown in either ambient (350 l l–1) or elevated CO2 (700 l l–1), and both mesic and xeric water regimes. Both CO2 and water treatment had significant effects on osmotic potential at full hydration, apoplasmic fractions, and tissue elastic moduli. Under xeric conditions and ambient CO2 concentrations, plants showed a decrease in osmotic potentials of 0.15 MPa and an increase in tissue elastic moduli at full hydration of 1.5 MPa. The decrease in elasticity may enable plants to improve the soil-plant water potential gradient given a small change in water content, while lower osmotic potentials shift the zero turgor loss point to lower water potentials. Under elevated CO2, plants in xeric conditions had osmotic potentials 0.2 MPa lower than mesic plants and decreased elastic moduli at full hydration. The increase in tissue elasticity at elevated CO2 enabled the xeric plants to maintain positive turgor pressures at lower water potentials and tissue water contents. Surprisingly, the elevated CO2 plants under mesic conditions had the most inelastic tissues. We propose that this inelasticity may enable plants to generate a favorable water potential gradient from the soil to the plant despite the low stomatal conductances observed under elevated CO2 conditions.  相似文献   

18.
Detrimental effect of rust infection on the water relations of bean   总被引:3,自引:0,他引:3       下载免费PDF全文
Bean plants (Phaseolus vulgaris L.) infected with the rust Uromyces phaseoli became unusually susceptible to drought as sporulation occurred. Under the conditions used (1,300 ft-c, 27 C, and 55% relative humidity) such plants wilted at soil water potentials greater than −1 bar, whereas healthy plants did not wilt until the soil water potential fell below −3.4 bars. Determinations of leaf water and osmotic potentials showed that an alteration in leaf osmotic potential was not responsible for the wilting of diseased plants. When diffusive resistance was measured as a function of decreasing leaf water content, the resistance of healthy leaves increased to 50 sec cm−1 by the time relative water content decreased to 70%, whereas the resistance of diseased leaves remained less than 8 sec cm−1 down to 50% relative water content. Apparently, water vapor loss through cuticle damaged by the sporulation process, together with the reduction in root to shoot ratio which occurs in diseased plants, upset the water economy of the diseased plant under mild drought conditions.  相似文献   

19.
PHYSIOLOGICAL STUDIES ON THE VERTICILLIUM WILT DISEASE OF TOMATO   总被引:2,自引:0,他引:2  
The water loss per unit leaf area of tomato plants was decreased after inoculation with Verticillium albo-atrum. When diseased plants began to wilt water loss temporarily increased, but then rapidly decreased to become less than that of healthy plants grown under conditions of adequate or restricted water supply.
The transpiration of excised leaves from plants grown with a restricted water supply was reduced, but not so severely as that of comparable leaves from infected plants. Water loss from leaves on infected plants was reduced irrespective of any blocking of the petiolar xylem.
The rate of water loss from turgid leaf disks on mannitol solutions, and the rate of water uptake of leaf disks on water was similar for disks cut from wilting or turgid leaves of diseased plants or healthy plants grown with an adequate or restricted water supply.
Disease or poor water supply reduced leaf growth but had no effect on the rate of leaf initiation. Although the density of stomata was higher on leaves of diseased plants the stomatal area was less than on healthy plants.
The resistance to water flow in diseased stems was high and was correlated with vessel blockage. About half the blocked vessels contained hyphae. The severity and localization of symptoms in inoculated plants growing on susceptible or resistant rootstocks was directly related to the extent of invasion by the pathogen and to vessel blockage.
Experiments on the wilting activity of cell-free filtrates from cultures of the pathogen in vitro indicated that it produced a stable substance, not an enzyme, that caused wilting in cut shoots by blocking the end of the stem. It is suggested that an increasing internal water shortage causes major symptoms of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号