首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A simple and rapid method to determine gadolinium (Gd) concentrations in urine and blood plasma samples by means of total reflection X-ray fluorescence (TXRF) was developed. With a limit of detection (LOD) of 100 μg L(-1) in urine and 80 μg L(-1) in blood plasma and a limit of quantification (LOQ) of 330 μg L(-1) in urine and 270 μg L(-1) in blood plasma, it allows analyzing urine samples taken from magnetic resonance imaging (MRI) patients during a period of up to 20 hours after the administration of Gd-based MRI contrast agents by means of TXRF. By parallel determination of the urinary creatinine concentration, it was possible to monitor the excretion kinetics of Gd from the patient's body. The Gd concentration in blood plasma samples, taken immediately after an MRI examination, could be determined after rapid and easy sample preparation by centrifugation. All measurements were validated with inductively coupled plasma mass spectrometry (ICP-MS). TXRF is considered to be an attractive alternative for fast and simple Gd analysis in human body fluids during daily routine in clinical laboratories.  相似文献   

2.
A rapid method for the quantification of amiodarone and desethylamiodarone in animal plasma using high-performance liquid chromatography combined with UV detection (HPLC-UV) is presented. The sample preparation includes a simple deproteinisation step with acetonitrile. In addition, a sensitive method for the quantification of amiodarone and desethylamiodarone in horse plasma and urine using high-performance liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is described. The sample preparation includes a solid-phase extraction (SPE) with a SCX column. Tamoxifen is used as an internal standard for both chromatographic methods. Chromatographic separation is achieved on an ODS Hypersil column using isocratic elution with 0.01% diethylamine and acetonitrile as mobile phase for the HPLC-UV method and with 0.1% formic acid and acetonitrile as mobile phase for the LC-MS/MS method. For the HPLC-UV method, good linearity was observed in the range 0-5 microg ml(-1), and in the range 0-1 microg ml(-1) for the LC-MS/MS method. The limit of quantification (LOQ) was set at 50 and 5 ng ml(-1) for the HPLC-UV method and the LC-MS/MS method, respectively. For the UV method, the limit of detection (LOD) was 15 and 10 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs of the LC-MS/MS method in plasma were much lower, i.e. 0.10 and 0.04 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs obtained for the urine samples were 0.16 and 0.09 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The methods were shown to be of use in horses. The rapid HPLC-UV method was used for therapeutic drug monitoring after amiodarone treatment, while the LC-MS/MS method showed its applicability for single dose pharmacokinetic studies.  相似文献   

3.
A selective and sensitive spectrofluorimetric method was developed and validated for the determination of amoxapine in human plasma and urine. The developed method is based on labeling with 5‐dimethylaminonaphthalene‐1‐sulfonyl chloride (dansyl chloride) and monitoring at 397 nm (excitation)/514 nm (emission). The method was validated for linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, recovery and robustness. The calibration curves were linear over a concentration range of 250–2500 and 50–1250 ng/mL for plasma and urine, respectively. The LOD values were calculated to be 13.31 and 13.17 ng/mL for plasma and urine, respectively. The proposed method was applied to study of amoxapine in human plasma and urine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A high-performance liquid chromatographic (HPLC) method with electrochemical detection and solid-phase extraction (SPE) using cartridges of weak cation-exchange capacity as the primary retention mechanism is described for the separation and determination of methylnaltrexone (MNTX) in small clinical samples of plasma or urine. The procedure was performed using a Phenomenex Prodigy ODS-2, 5 microm, 150x3.2 mm analytical column and 50 mM potassium acetate buffer, with 11% methanol as organic modifier at pH* 4.5 at a flow-rate of 0.5 ml/min. The detection potential was 700 mV. The six-point standard calibration curves were linear over three consecutive days in the range from 2 to 100 ng/ml. The average goodness of fit (r) was 0.9993. The lower limit of detection (LOD) and limit of quantification (LOQ) were found to be 2.0 and 5.0 ng/ml, respectively. At the LOQ, the coefficient of variation for the entire method was 8.0% and the accuracy was 10.0% (n = 10). Recovery of the drug from plasma was in the region of 94%. The method was applied to a pharmacokinetics study of methylnaltrexone after subcutaneous administration and in numerous assays of analytes in blood plasma and urine. The pharmacokinetics parameters for a single dose of 0.1 or 0.3 mg/kg in plasma were C(max) = 110 (+/-55) and 287 (+/-101) ng/ml and t(max) = 16.7 (+/-10.8) and 20.0 (+/-9.5) min, respectively. The method is simple, yet sensitive for the detection and determination of methylnaltrexone in biological samples at the level of the physiological response.  相似文献   

5.
A sensitive, selective and accurate high-performance liquid chromatographic–tandem mass spectrometric assay was developed and validated for the determination of lidocaine and its metabolites 2,6-dimethylaniline (2,6-xylidine), monoethylglycinexylidide and glycinexylidide in human plasma and urine. A simple sample preparation technique was used for plasma samples. The plasma samples were ultrafiltered after acidification with phosphoric acid and the ultrafiltrate was directly injected into the LC system. For urine samples, solid-phase extraction discs (C18) were used as sample preparation. The limit of quantification (LOQ) was improved by at least 10 times compared to the methods described in the literature. The LOQ was in the range 1.6–5 nmol/l for the studied compounds in plasma samples.  相似文献   

6.
A liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method has been developed for the determination of trenbolone in bovine urine and serum. The aim was a control of the misuse of trenbolone in food-producing animals. The procedure involved, in both cases, a preliminary solid-phase clean-up followed by a liquid-liquid extraction for urine samples after a preliminary enzymatic hydrolysis. The extracts have been directly analysed by reversed-phase LC-MS-MS in selected reaction monitoring (SRM), acquiring two diagnostic product ions from the chosen precursor [M+H](+). The procedures were validated across the concentration range of 1-1500 ng/ml. The linearity, the inter- and intra-day accuracy and precision have been determined. The procedure was specific and the accuracy values were better than 20% at the limit of quantitation of spiked samples. The limit of quantification (LOQ) and the limit of detection (LOD) were, respectively, 1 ng/ml and 350 pg/ml for urine and serum. According to the draft, SANCO/1805/2000, we determined the decision limit CCalpha and the detection capability CCbeta. The recovery values for urine ranged from 87 to 128%, and for plasma the recovery was 70+/-4%. The procedure proved to be simple and suitable for routine and confirmatory purposes such as those developed for residue studies.  相似文献   

7.
A sensitive and accurate stable isotope dilution GC/MS assay was developed and validated for the quantification of succinylacetone (SA) in plasma and amniotic fluid (AF). SA is pathognonomic for tyrosinemia type I, a genetic disorder caused by a reduced activity of fumarylacetoacetate hydrolase (FAH). In untreated patients, SA can easily be measured in plasma and urine because the expected concentrations are in the micromol/L range. Due to a founder effect, the province of Quebec has an unusually high prevalence of tyrosinemia type I, hence, the quantification of SA in AF or plasma of treated patients in the nmol/L range becomes very useful. The method utilizes 13C5-SA as an internal standard and a three-step sample treatment consisting of oximation, solvent extraction and TMCS derivatization. The assay was validated by recording the ion intensities of m/z 620 for SA and m/z 625 for ISTD in order to demonstrate the precision of measurements, the linearity of the method, limit of quantification and detection (LOQ and LOD), specificity, accuracy, as well as metabolite stability. Values for the intra-day assays ranged from 0.2 to 3.2% while values for the inter-day assays ranged from 1.9 to 5.6% confirming that the method has good precision. A calibration plot using SA detected by GC/MS gave excellent linearity with a correlation coefficient of 0.999 over the injected concentration range of 5-2000 nmol/L. LOQ and LOD were 3 and 1 nmol/L, respectively. The usefulness of this method was demonstrated by SA quantification in an AF sample of an affected fetus and in plasma of patients treated with NTBC. The results demonstrate that this novel GC/MS method may be a valuable tool for metabolic evaluation and clinical use.  相似文献   

8.
Optimized conditions, validation and practical applications of a new, rapid and specific fluorometric method for the determination of deferiprone (DFP) in urine and serum samples are reported. The proposed method, which is based on the formation of a luminescent complex with Tb3+ ion, is evaluated in terms of linearity, accuracy, precision, stability, recovery and limits of detection (LOD) and quantification (LOQ). Under optimum conditions (pH 7.5, [Tb3+] = 3 × 10–4 mol/L, temperature 0 °C and excitation wavelength 295 nm), the relative intensities at 545 nm are linear, with the concentration of DFP in the range 0.072–13 mmol/L for urine and serum samples. The LOD and LOQ, respectively, are calculated to be 0.014 and 0.045 mmol/L for urine and 0.022 and 0.072 mmol/L for serum samples. The intra‐day and inter‐day values for the precision and accuracy of the proposed method are all < 5%, and the recovery of the method is in the range 97.1–103.8%. The method was applied to human urine and serum samples collected from patients receiving DFP. The results indicated that the method can be successfully applied to the determination of DFP in human urine and serum samples collected for clinical or biopharmaceutical investigations in which simple, rapid, cheap and specific determination methods facilitate and speed up the analytical procedure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A high-performance liquid chromatography-mass spectrometry (HPLC-MS) method for the quantification of phenprocoumon, warfarin, and their known monohydroxylated metabolites in human plasma and urine was developed using a simple, selective solid-phase extraction scheme. Chromatographic separation was achieved on a reversed-phase Luna C18 column and step gradient elution resulted in a total run time of about 13 min. Limits of quantification (LOQ) were < or = 40 nM for the parent compounds and < or = 25 nM for the metabolites and the limit of detection (LOD) was < or = 2.5 nM for all analytes. Average recovery was 84% (+/- 3.7) and 74% (+/- 13.2) in plasma and urine, respectively. Intra- and inter-day coefficients of variation were < or = 8.6 and < or = 10.6% in plasma and urine, respectively. The method was successfully applied to the analysis of phenprocoumon samples from four healthy volunteers and should prove useful for future comparative studies of warfarin and phenprocoumon pharmacokinetics.  相似文献   

10.
A high-performance liquid chromatographic method for determination of amodiaquine (AQ), desethylamodiaquine (DAQ), chloroquine (CQ) and desethylchloroquine (DCQ) in human whole blood, plasma and urine is reported. 4-(4-Dimethylamino-1-methylbutylamino)-7-chloroquinoline was used as internal standard. The drugs and the internal standard were extracted into di-isopropyl ether as bases and then re-extracted into an acidic aqueous phase with 0.1 M phosphate buffer at pH 4.0 for AQ samples and at pH 2.5 for CQ filter paper samples. A C(18) column was used and the mobile phase consisted of methanol-phosphate buffer (0.1 M, pH 3)-perchloric acid (250: 747.5:2.5, v/v). The absorbance of the drugs was monitored at 333 nm and no endogenous compound interfered at this wavelength. The limit of quantification in whole blood, plasma and urine was 100 nM for AQ and DAQ (sample size 100 microliter) as well as for CQ and DCQ in blood samples dried on filter paper. For 1000 microliter AQ and DAQ samples, the limit of quantification was 10 nM in all three biological fluids. The within-assay and between-assay coefficients of variations were always <10% at the limits of quantification. Plasma should be preferred for the determination of AQ and DAQ since use of whole blood may be associated with stability problems.  相似文献   

11.
In this paper, a new determination method for isometamidium residues in animal-derived foods was developed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Isometamidium residues in bovine tissues and milk were extracted with the mixed solution of acetonitrile and 0.25 mol/L of ammonium formate-methanol (v/v, 1:1), concentrated and degreased, and determined by LC-MS/MS with quantification by external standard method. The results showed that the peak area of chromatogram was linearly related to the concentration of isometamidium in the range of 1-100 μg/L, and the limits of detection (LOD) and quantification (LOQ) were 0.05 μg/kg and 5 μg/kg, respectively. The average recoveries of spiked samples were in the range of 73.8-93.9% with relative standard deviations ranged from 2.3% to 7.5%. This method is simple, accurate and suitable for the identification and quantification for isometamidium in animal-derived foods.  相似文献   

12.
目的:建立一种可见分光光度法单独测尿中痕量1-萘酚的新方法。方法:在碱性介质中,1-蔡酚(1-NAP)与氯霉素作用生成蓝色物质导致体系的吸光度增加,2-NAP不干扰测定。结果:该蓝色产物的最大吸收波长Amax=472.0nm,其吸光度与1-NAP摩尔浓度在7.64×10^-7mol/L-6.31×10^-4mol/L范围内线性关系良好,线性回归方程为△A=0.3146C+0.0239,相关系数r=0.9973,检出限为2.29×10^-7mol/L,相对标准偏差RSD为3.25%-6.42%,加标回收率为95.3%-105.7%。结论:本方法灵敏、简单、快速、易于推广,用于人尿中1-NAP含量的单独测定结果满意。  相似文献   

13.
A high-performance liquid chromatographic (HPLC) procedure for lamotrigine was developed and validated. Lamotrigine (LTG) and an internal standard were extracted from plasma using liquid–liquid extraction under alkaline conditions into an organic solvent. The method was linear in the range 0.78–46.95 μmol/l, with a mean coefficient of correlation (r)≥0.99923. The limit of detection (LOD) and limit of quantification (LOQ) were 0.19 and 0.58 μmol/l, respectively. Within- and between-run precision studies demonstrated C.V.<3% at all tested concentrations. LTG median recovery was 86.14%. Antiepileptic drugs tested did not interfere with the assay. The method showed to be appropriate for monitoring LTG in plasma samples.  相似文献   

14.
In this study, a novel method is described for the determination of tramadol in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as the sample clean-up technique combined with high-performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and tramadol as template molecule. The novel imprinted polymer was used as a solid-phase extraction (SPE) sorbent for the extraction of tramadol from human plasma and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for the MIP cartridges were studied. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol. The limit of detection (LOD) and limit of quantification (LOQ) for tramadol in urine samples were 1.2 and 3.5 μg L−1, respectively. These limits for tramadol in plasma samples were 3.0 and 8.5 μg L−1, respectively. The recoveries for plasma and urine samples were higher than 91%.  相似文献   

15.
A novel, sensitive and selective spectrofluorimetric method was developed for the determination of tamsulosin in spiked human urine and pharmaceutical preparations. The proposed method is based on the reaction of tamsulosin with 1‐dimethylaminonaphthalene‐5‐sulfonyl chloride in carbonate buffer pH 10.5 to yield a highly fluorescent derivative. The described method was validated and the analytical parameters of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, recovery and robustness were evaluated. The proposed method showed a linear dependence of the fluorescence intensity on drug concentration over the range 1.22 × 10‐7 to 7.35 × 10‐6 M. LOD and LOQ were calculated as 1.07 × 10‐7 and 3.23 × 10‐7 M, respectively. The proposed method was successfully applied for the determination of tamsulosin in pharmaceutical preparations and the obtained results were in good agreement with those obtained using the reference method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
An improved reverse-phase high-performance liquid chromatographic method (RP-HPLC) for the determination of a novel iron chelator CP502 (1,6-dimethyl-3-hydroxy-4-(1H)-pyridinone-2-carboxy-(N-methyl)-amide hydrochloride) in rat plasma, urine and feces was developed and validated. The separation was performed on a polymeric column using a mobile phase composed of 1mM ethylenediaminetetra-acetic acid disodium salt (EDTA), acetonitrile, methanol and methylene chloride. Separation of CP502 from plasma, urine or feces endogenous compounds was achieved by gradient elution. Retention times of CP502 and its major metabolite (glucuronide) were about 13 and 4 min, respectively. The method was validated in terms of limit of detection (LOD), limit of quantification (LOQ), selectivity (endogenous from plasma, urine or feces), linearity, extraction recovery, robustness (column selection, mobile phase composition, detection mode, internal standard (IS) selection, analyte stability), day-to-day reproducibility and system suitability (repeatability, peak symmetry and resolution). The method is applicable to bioavailability and pharmacokinetic studies of CP502 in rats.  相似文献   

17.
Interaction of reactive oxygen species with DNA results in a variety of modifications, including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which has been extensively studied as a biomarker of oxidative stress. Oxidative stress is implicated in a number of pathophysiological processes relevant to obstetrics and gynecology; however, there is a lack of understanding as to the precise role of oxidative stress in these processes. We aimed to develop a rapid, validated assay for the accurate quantification of 8-oxodG in human urine using solid-phase extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and then investigate the levels of 8-oxodG in several fluids of interest to obstetrics and gynecology. Using UHPLC-MS/MS, 8-oxodG eluted after 3.94 min with an RSD for 15 injections of 0.07%. The method was linear between 0.95 and 95 nmol/L with LOD and LOQ of 5 and 25 fmol on-column, respectively. Accuracy and precision were 98.7-101.0 and <10%, respectively, over three concentrations of 8-oxodG. Recovery from urine was 88% with intra- and interday variations of 4.0 and 10.2%, respectively. LOQ from urine was 0.9 pmol/ml. Rank order from the greatest to lowest 8-oxodG concentration was urine>seminal plasma>amniotic fluid>plasma>serum>peritoneal fluid, and it was not detected in saliva. Urine concentrations normalized to creatinine (n=15) ranged between 0.55 and 1.95 pmol/μmol creatinine. We describe, for the first time, 8-oxodG concentrations in human seminal plasma, peritoneal fluid, amniotic fluid, and breast milk, as well as in urine, plasma, and serum, using a rapid UHPLC-MS/MS method that will further facilitate biomonitoring of oxidative stress.  相似文献   

18.
Valproyl taurinamides are a novel group of compounds that possess anticonvulsant activity. In this study a gas chromatographic micromethod was developed for the quantification of selected valproyl taurinamides and some of their metabolites in biological samples. Valproyl taurinamide (VTD), N-methyl valproyl taurinamide (M-VTD), N,N-dimethyl valproyl taurinamide (DM-VTD) and N-isopropyl valproyl taurinamide (I-VTD) were analyzed in mouse and dog plasma and in dog urine using gas chromatography. Flame ionization detection and mass spectrometric detection were compared. The plasma samples were prepared by solid-phase extraction using C(18) cartridges. The urine samples were prepared by liquid-liquid extraction. The sample volume used was 100 microl of dog plasma, 50 microl of mouse plasma and 20 microl of dog or mouse urine. The quantification range of the method was 1.5-50 mg/l in dog plasma (VTD only), 2.5-250 mg/l in mouse plasma (0.7-90 pmol injected) and 0.04-2 mg/ml in dog urine (VTD only). The inter-day precision in plasma and urine samples was around 10% for all quantified concentrations except LOQ (15-20%). The accuracy for all four compounds was between 90 and 110% within the entire concentration range. The developed method was suitable for quantification of a series of CNS-active valproyl taurineamide derivatives in biological samples at relevant in vivo concentrations.  相似文献   

19.
A molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography (MISPE-HPLC) method was developed for rapid screening of mycophenolic acid (MPA) in human plasma. MPA imprinted polymers (MPA-MIP) were synthesized and then tested for their performance both in organic and in aqueous solution. MPA was selectively trapped and preconcentrated on the MPA-MIP sorbent using different loading and washing conditions. The good selectivity of MPA-MIP enabled further clean-up of the interfering components in human plasma. For the proposed MISPE-HPLC method, the linearity between responses (peak area) and concentration was found over the range of 1-100microg/ml with a linear regression coefficient (R(2)) of 0.9989. The limit of detection (LOD) and theoretical limit of quantification (LOQ) for MPA in plasma were 0.10 and 0.32microg/ml, respectively. The precisions were 7.3, 3.5 and 4.7% RSD for intra-day assay and 9.2, 4.1 and 5.5% RSD for inter-day reproducibility, respectively, at three concentration levels of MPA in spiked plasma (1, 10 and 100microg/ml). Both recoveries for the extraction (more than 74%) and for the analytical method (more than 87%) were acceptable for screening MPA in plasma samples. Twelve-hour pharmacokinetic profile of MPA for a renal transplant recipient receiving chronic oral dosing of 500mg mycophenolate mofetil (MMF) was investigated. Results indicated that this method could be applied for therapeutic drug monitoring of mycophenolic acid in patient plasma.  相似文献   

20.
Two new stable isotope dilution assays were developed for the quantification of ochratoxin A in human blood samples for exposure studies. The methods based on two different sample extraction and cleanup procedures including liquid–liquid extraction with following immunoaffinity chromatography (IA) as well as a dispersive solid-phase extraction (DSPE) method. For detection, LC–MS/MS was applied. For the first time, exact quantitation of the reference compound ochratoxin A was performed by quantitative NMR spectroscopy (qNMR). Additionally, a comparison of different blood-drawing procedures revealed no differences for heparin plasma and serum whereas citrate plasma gave significantly lower results for the mycotoxin. Limits of detection (LOD: 0.02 ng/g (IA) vs 0.03 ng/g (DSPE)), limits of quantification (LOQ: 0.07 ng/g (IA) vs 0.08 ng/g (DSPE)), relative recovery (?94%), precision, and linearity indicated excellent performance of the developed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号