首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two of the four members of subsection Contortae of the genus Pinus occur in the southeastern United States: Pinus virginiana, which ranges throughout the southern and central Appalachian Mountains, and P. clausa, which is restricted to Florida and southern Alabama. We examined allozyme variation within P. virginiana and genetic relationships between this species and the two varieties of P. clausa (var. clausa and var. immuginata). P. virginiana maintains more genetic diversity at both the species (Hes = 0.139) and population (Hep = 0.128) levels than the other three species in the subsection, which may reflect the combination of its widespread distribution and the absence of cone serotiny. Genetic differentiation among populations in P. virginiana was relatively low (GST = 0.053), but significant contrasts in allozyme frequencies and genetic diversity were apparent between populations to the northwest vs. outheast of the Appalachian Mountains. These regional differences likely resulted initially from historical processes that occurred during the Pleistocene and early Holocene, and have been reinforced by modern selective pressures and barriers to gene flow. The mean genetic distance between populations of P. virginiana and P. clausa (D = 0.071) was greater than that between populations of the two varieties of P. clausa (D = 0.012), which suggests that the two varieties diverged at some point after the separation of the two species.  相似文献   

2.
Ammopiptanthus nanus is an endangered evergreen shrub endemic to the deserts of central Asia and plays an important role in delaying further desertification. We examined allozyme variation and AFLP diversity in A. Nanus populations and investigated the mating system of this species using progeny arrays assayed for poly-morphic allozyme loci. Mating system analysis in the Keyi'eryongke'er population showed low levels of out-crossing, and strong inbreeding depression. Low levels of genetic variation were detected at both population (allozyme, Pp=14.0%,A=1.14, He=0.031; AFLP, Pp=14.5%, Shannon's information index I=0.063) and species (allozyme, Pp=21.1%,A=1.21, He=0.040; AFLP, Pp=20.9%, I=0.083) levels; while moderate genetic differentia-tion existed among populations, as indicated by allozymes (GST=0.081) and AFLP (GST=0.151-0.193). Founder effect, bottlenecks in evolutionary history, the mixed mating system and co-ancestry may have influenced the level of genetic diversity in A. Nanus. Markers of both types provide new insights for conservation management, indicating that the Biao'ertuokuoyi and Keyi'eryongke'er populations should be given priority for in situ conser-vation and regarded as seed sources for ex situ conservation.  相似文献   

3.
Godt MJ  Hamrick JL  Meier A 《Genetica》2004,122(2):207-215
Cymophyllus fraserianus (Fraser's sedge) is a rare perennial evergreen herb found in late-successional forest communities in the Appalachian Mountains of the U.S. Genetic diversity was assessed at 19 allozyme loci for 12 populations sampled from the southern and central portions of the range of this primitive monotypic genus. Species variation was comparable to that found for other narrowly distributed species, although mean population genetic diversity was somewhat higher. Sixteen of the 19 loci (84%) were polymorphic, with a mean of 46% polymorphic within populations. On average, 2.7 alleles were detected per polymorphic locus. Genetic diversity within populations (Hep) averaged 0.113, whereas species' genetic diversity (Hes) was 0.131. Although a twofold range of within-population genetic diversity (Hep = 0.075-0.158) was found, less than 13% of the genetic variation was distributed among populations (G(ST) = 0.129). An indirect estimate of historical levels of gene flow (Nm = 1.69) was consistent with the high mean genetic identity (mean I = 0.96) found between populations. Despite the relictual nature of C. fraserianus, its rarity and fragmented distribution, genetic diversity within the genus is typical of herbs with similar life-history characteristics. No association was found between geographic and genetic distances between populations (r = -0.01; p > 0.9), suggesting that present day populations are relatively isolated.  相似文献   

4.
Allozyme, chloroplast (cpDNA) and random amplified polymorphic DNA (RAPD) markers have been used to estimate genetic and taxonomic relationships among different populations of Abies alba and the relic population of A. nebrodensis. Twelve isozyme gene loci, as well as restriction fragment length polymorphism (RFLP) at cpDNA spacer regions between t-RNA genes were analysed. Moreover, a set of 60 random sequence 10-mer primers were tested. Over all isozyme loci, evident differences in allele frequencies among A. nebrodensis and A. alba populations were found, particularly at 2 loci, phosphoglucose isomerase (Pgi-a) and shikimate dehydrogenase (Skd-a). More than 10% of the total genetic diversity was due to differences among populations. High values of genetic distances among populations were also found. Out of the 60 primers tested, 12 resulted in a polymorphic banding pattern both within and among populations. A total of 84 RAPD fragments were produced by the 12 selected primers. A phenogram of relationships among populations was constructed based on RAPD band sharing: the differentiation of the A. nebrodensis population was evident. The analysis of molecular variance (AMOVA) was used to apportion the variation among individuals within populations and among populations. There was considerable variation within each population: even so, genetic divergence was found among populations. This pattern of genetic variation was very different from that reported for inbred species. Identical cpDNA amplification and restriction patterns were observed among all the individuals sampled from the populations. Taken together, the results of allozyme and RAPDs show a clear differentiation among A. nebrodensis and A. alba populations and provide support for their classification into two different taxonomic groups.  相似文献   

5.
Thirty populations from five species of Hemerocallis in Korea were analyzed by starch gel electrophoresis to measure genetic diversity and to determine genetic population structure and the amount of genetic divergence within and between species at 12 isozyme loci. In addition, Moran's I spatial autocorrelation statistics were used to examine the spatial distribution of allozyme polymorphisms in populations of H. thunbergii and H. hakuunensis. Populations of five Korean species maintain high levels of genetic variation and little differentiation among populations and species. Mean expected heterozygosities range from 0.165 in H. hongdoensis, an island endemic, to 0.265 in H. taeanensis, and a total of 81 alleles across the 12 loci were detected in the five species. G(ST) values for each of the five species were low, ranging from 0.051 in H. taeanensis to 0.078 in H. hakuunensis. Mean intraspecific Nei's genetic identities (I) between populations of the five species were all above 0.97. However, a considerable level of heterozygote deficiencies within populations was detected, ranging from 0.242 to 0.411 measured as F(IS) statistics. This deficiencies may be due to inbreeding, limited pollen and seed dispersal, or from the pooling of subpopulations that differ in allele frequencies. A small spatial scale population substructuring (<12 m) was found in H. thunbergii and H. hakuunensis. A group of populations from each of the five previously designated Hemerocallis species (based on their morphology, ecology, and phenology) agrees with our allozyme data, though pairwise comparisons among species had high I values (from 0.862, H. middendorffii vs. H. hongdoensis, to 0.969, H. thunbergii vs. H. taeanensis). This is attributed to the presence of the same high-frequency alleles in different species at seven loci. In addition, no "diagnostic allele" that appears in all populations of one species, but is absent in other species, was detected at the 12 isozyme loci. These all suggest that species of Hemerocallis in Korea may have recently derived from an ancestor or progenitor harboring high levels of genetic diversity.  相似文献   

6.
Genetic differentiation at the morphological, isozyme, and DNA levels among sevenDasypyrum villosum (Poaceae, Triticeae, 2n = 14, VV genomes) populations from Italy was studied. A measure of the mating system was also obtained. Genetic diversity was mainly distributed within populations (90%) rather than among populations (10%), typical for most allogamous species. Interpopulation diversity, however, was greatest between the most geographically distant populations (about 750 km apart, 911 m altitude difference). The mating system was estimated to vary from 55 to 100% outcrossing. One population (I-16, Bomarzo) deviated from the others in its uniform early flowering habit and presence of isozyme alleles not found in other populations. It had genetic diversity similar to other populations for isozyme (Got-V2, Got-V3, andEst-VF) and ribosomal RNA (Nor-Vl) loci. This population is believed to be the product of a few migrant founder seeds and its unique characters point out that generalized population biology parameters of genetic diversity are not sufficient for describing species variation nor for developing conservation strategies.  相似文献   

7.
The genetic diversity and population structure of Potentilla fragarioides var. sprengeliana(Rosaceae) in Korea were investigated using genetic variation at 22 allozyme loci. The percent of polymorphic loci within the enzymes was 59.1%. The genetic diversity at the species level and at the population level was high (Hes=0.210; Hep=0.199, respectively), whereas the extent of the population divergence was relatively low (GST=0.074). FIS, a measure of the deviation from random mating within the 19 populations, was 0.331. An indirect estimate of the number of migrants per generation (Nm=3.15) indicates that gene flow is high among Korean populations of the species. In addition, analysis of fixation indices revealed a slight heterozygote deficiency in some populations and at some loci. The mean genetic identity between populations was 0.985. It is highly probable that the trend of genetic uniformity in a relatively homogeneous habitat is thought to be operated among Korean populations of P. fragarioides var.sprengeliana.  相似文献   

8.
We determined the genetic diversity and population structures ofCarex breviculmis (Cyperaceae) populations in Korea, using genetic variations at 23 allozyme loci.C. breviculmis is a long-lived herbaceous species that is widely distributed in eastern Asia. A high level of genetic variation was found in 15 populations. Twelve enzymes revealed 23 loci, of which 11 were polymorphic (47.8%). Genetic diversity at the speciesand population levels were 0.174 and 0.146, respectively. Total genetic diversity (HT = 0.363) and within-population genetic diversity (Hs = 0.346) were high, whereas the extent of the population divergence was relatively low (GST = 0.063). Deviation from random mating (Fis) within the 15 populations was 0.206. An indirect estimate of the number of migrants per generation(Nm = 3.69) indicated that gene flow was extensive among Korean populations of this species. Analysis of fixation indices revealed a substantial heterozygote deficiency in some populations and at some loci. Genetic identity between popu-lations was high, exceeding 0.956.  相似文献   

9.
根据 2 2个等位酶位点遗传变异 ,探讨了韩国境内委陵菜 (PotentillafragarioidesL .var.sprengeliana)的遗传多样性和种群结构。酶位点的多态位点百分比为 5 9 1%。种和种群水平上的遗传多样性比较高 ,分别为Hes=0 .2 10 ,Hep=0 .199;而种群的分化水平则相对较低 (GST=0 .0 74)。 19个种群中随机交配的偏差为FIS=0 .331。每代迁移数的间接估计 (Nm=3.15 )表明该种在韩国的种群间基因流较高。另外 ,固定指数分析显示在一些种群和位点有轻微的杂合子缺乏。种群间平均遗传一致度为 0 985。这些韩国委陵菜种群存在于较为均一的生境 ,这很有可能是造成其种群遗传一致性较高的原因。  相似文献   

10.
Thirteen allozyme loci and 68 random amplified polymorphic DNA (RAPD) markers were analyzed to assess the genetic diversity and population structure of threatened Antirrhinum microphyllum (Scrophulariaceae), a narrow endemic of central Spain known from only four populations. According to allozyme data, species genetic diversity (p = 46.15%, A = 2.61, and H(e) = 0.218), as well as within-population genetic diversity (p = 44.23%, A = 2.10, and H(e) = 0.204), were high when compared to average estimates for other narrowly distributed plant species. Ninety-four percent of species genetic diversity corresponded to within-population genetic diversity. Nevertheless, significant differences were found among populations in allele frequencies of four of the six polymorphic loci, and three private alleles were detected. Inbreeding coefficients (F(IS)) suggest that populations are structured in genetic neighborhoods. The RAPDs also showed high levels of genetic diversity (p = 89.71% and H(e) = 0.188 at the species level, and p = 67.65% and H(e) = 0.171 at the population level). Nei's genetic distances estimated both from allozymes and RAPDs indicated low differentiation among populations. In spite of this, the low frequencies of certain alleles and the presence of private alleles indicate that efforts should be made to conserve all four remaining populations.  相似文献   

11.
The genetic structure of five natural populations of common wild rice Oryza rufipogon Griff. from China, was investigated with 21 microsatellite loci and compared to estimates of genetic diversity and genetic differentiation detected by 22 allozyme loci. Microsatellite loci, as expected, have much higher levels of genetic diversity (mean values of A = 3.1, P = 73.3%, Ho = 0.358 and He = 0.345) than allozyme loci (mean values of A = 1.2, P = 12.7%, Ho = 0.020 and He = 0.030). Genetic differentiation detected by microsatellite loci ( FST = 0.468, mean I = 0.472) was higher than that for allozyme loci ( FST =0.388, mean I = 0.976). However, microsatellite markers showed less deviation from Hardy-Weinberg expectation (Wright's inbreeding coefficient FIS = -0.069) than do allozymes ( FIS = 0.337). These results suggest that microsatellite markers are powerful high-resolution tools for the accurate assessment of important parameters in population biology and conservation genetics of O. rufipogon, and offer advantages over allozyme markers.  相似文献   

12.
Ge XJ  Sun M 《Molecular ecology》1999,8(12):2061-2069
Mangroves consist of a group of taxonomically diverse species representing about 20 families of angiosperms. However, little is known about their reproductive biology, genetic structure, and the ecological and genetic factors affecting this structure. Comparative studies of various mangrove species are needed to fill such gaps in our knowledge. The pollination biology, outcrossing rate, and genetic diversity of Aegiceras corniculatum were investigated in this study. Pollination experiments suggested that the species is predominantly pollinator-dependent in fruit setting. A quantitative analysis of the mating system was performed using progeny arrays assayed for intersimple sequence repeat (ISSR) markers. The multilocus outcrossing rate (tm) was estimated to be 0.653 in a wild population. Both allozyme and ISSR were used to investigate genetic variation within and among populations. The combined effects of founder events and enhanced local gene flow through seedling dispersal by ocean currents apparently played an important role in shaping the population genetic structure in this mangrove species. Both allozyme variation (P = 4.76%, A = 1.05, HE = 0.024) and ISSR diversity (P = 16.18%, A = 1.061, HE = 0.039) were very low at the species level, in comparison with other woody plants with mixed-mating or outcrossing systems. Gene differentiation among populations was also low: allozyme GST = 0.106 and ISSR GST = 0.178. The unusually high genetic identities (0.997 for allozyme and 0.992 for ISSR loci), however, suggest that these populations are probably all descended from a common ancestral population with low polymorphism.  相似文献   

13.
 Genetic diversity in a natural Elymus caninus population from Denmark was assessed using isozyme and microsatellite markers. A total of 119 individuals from 46 maternal plants were assayed. Microsatellite loci are shown to display higher levels of variation than isozyme loci. The mean number of alleles per locus was 1.04 for isozymes and 1.38 for microsatellites. The percentage of polymorphic loci for isozymes and microsatellites was 4.7% and 23.6% across the maternal plant, respectively. The genetic diversity at population level was 0.1 for isozymes, and 0.63 for microsatellites. The mean genetic diversity at maternal plant level was 0.027 for isozyme loci and 0.117 for microsatellite loci. The average of total allozyme diversity (HT) was 0.22. The average of total microsatellite diversity was 0.56. Isozyme and microsatellite variation showed the same pattern of differentiation between maternal plants. More than 75% total genetic diversity was found among maternal plants. About 25% total genetic diversity was detected within maternal plants. Ten (22.7%) maternal plants produced heterozygous offspring at allozyme loci, and 30 (68.2%) maternal plants gave heterozygous offspring at microsatellite loci. Both types of markers revealed a relatively high genetic diversity in this population. Received November 7, 2000 Accepted February 15, 2001  相似文献   

14.
Abstract Carex misera is a rare sedge, endemic to rocky outcrops and mountain summits within the southern Appalachian Mountains from northern Georgia to northern North Carolina. We assessed allozyme diversity for 406 individuals from nine populations over most of the geographic range. Twenty-seven putative loci were assayed and eight (30%) were found to be polymorphic. Nei's gene diversity statistics ( H T =0.043, H S =0.019, G ST =0.551) indicated low levels of variation but relatively highly differentiated populations, suggesting little gene flow. Significant deviations from genotypic expectations under Hardy-Weinberg equilibrium, high positive fixation indices, and the existence of small genetic neighborhoods within populations suggest that at least some inbreeding occurs. Cluster analysis of Nei's genetic identity statistics and principal component analysis of allele frequency data showed high similarity among the six southern populations with the two northern populations more differentiated from them and from each other. These results suggest that preservation of the northern populations is necessary to conserve the already low levels of genetic diversity within the species.  相似文献   

15.
Colonizing species are predicted to suffer from reductions in genetic diversity during founding events. Although there is no unique mode of reproduction that is characteristic of successful plant colonizers, many of them are predominantly self-fertilizing or apomictic species, and almost all outcrossing colonizers are self-compatible. Carduus acanthoides comprises a species of disturbed habitats with wind-dispersed seeds that colonizes open spaces of various sizes. Population genetic diversity was expressed by assessing patterns of variation at nine putatively neutral allozyme loci within and among 20 natural populations in its native distribution range in the Czech Republic. Overall, C. acanthoides displayed high levels of genetic diversity compared to other herbaceous plants. The percentage of polymorphic loci was 84.5, with values of 2.37, 0.330, and 0.364 for the mean number of alleles per polymorphic locus ( A ), observed heterozygosity ( H o), and expected heterozygosity ( H e), respectively. There was only weak evidence of inbreeding within populations ( f  = 0.097) and very low genetic differentiation among populations ( θ  = 0.085). Analyses of the data provide strong evidence for isolation-by-distance for the whole study area. Even the colonizing species, C. acanthoides , currently supports a substantial amount of allozyme variation at both the species and population levels.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 596–607.  相似文献   

16.
Allozyme investigation of the five Cimicifuga taxa in Korea was conducted to assess genetic and clonal diversity within populations and genetic divergence among populations and taxa. Levels of allozyme variation maintained in Korean Cimicifuga taxa were comparable to those for most herbaceous perennials. In general, samples excluding copies of the same multilocus genotype maintained higher levels of genetic diversity than the total samples within populations. Copies of homozygous genotypes at several loci resulting from clonal spread lead to decreased levels of genetic diversity within populations, indicating that clonal reproduction found in Cimicifuga affects population genetic structure. In general, more widely distributed species such as C. dahurica and C. japonica harbored higher levels of allozyme diversity than the other taxa examined. Although two varieties of C. heracleifolia are geographically and reproductively isolated, the genetic and clonal structure of var. bifida seems to resemble var. heracleifolia, indicating that the two varieties may have had a similar evolutionary history. However, the allozyme data strongly indicate that the two morphological types (Groups I and II) of C. simplex should be treated as separate species.  相似文献   

17.
Many terrestrial orchids are historically rare and occur in small, spatially isolated populations. Theory predicts that such species will harbour low levels of genetic variation within populations and will exhibit a high degree of population genetic divergence, primarily as a result of genetic drift. If the origin of the present‐day populations is relatively recent from the same genetically depauperate source population, a complete lack of genetic differentiation between conspecific populations is expected. If a terrestrial orchid was historically common with moderate or high levels of genetic diversity, but has experienced more recent anthropogenic disturbance as a result of over‐collection, it would still exhibit initial levels of genetic variation within populations and a low degree of genetic divergence between populations. To test these predictions, we examined the genetic diversity in six populations (N = 131) of the historically and currently rare Cypripedium japonicum and in four populations (N = 94) of the historically common but now rare C. macranthos from South Korea. Fourteen putative allozyme loci resolved from eight enzyme systems revealed no variation either within or among populations of C. japonicum, which supports the first prediction. In contrast, populations of C. macranthos harboured high levels of genetic variation (mean percentage of polymorphic loci %P = 46.7; mean expected heterozygosity He = 0.185) and exhibited a low degree of population genetic divergence (GST = 0.059), supporting the second prediction. The lack of genetic variation both within and among conspecific populations of C. japonicum may suggest that populations originated from the same genetically depauperate ancestral population. The high levels of genetic diversity maintained in populations of C. macranthos suggest that the collection‐mediated decrease in the number of individuals is still too recent for long‐term effects on genetic variation. Based on current demographic and genetic data, in situ and ex situ conservation strategies should be provided to preserve genetic variation and to ensure the long‐term survival of the two species in the Korean Peninsula. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 119–129.  相似文献   

18.
Li JM  Jin ZX 《Genetica》2008,133(3):227-234
Inter-simple sequence repeat (ISSR) markers were used to determine the genetic variation and genetic differentiation of nine populations of Emmenopterys henryi Oliv., an endangered plant endemic to China. Relatively low genetic diversity was detected at population level (the percentage of polymorphic loci P=22.56%, the number of alleles per locus A=1.183+/-0.045, the effective number of alleles per locus A(E)=1.007+/-0.345, Nei's gene diversity h=0.071+/-0.017, Shannon information index I=0.104+/-0.025). However, the genetic diversity at species level was relatively high (P=56.05%; A=1.561+/-0.498, A(E)=1.325+/-0.371, h=0.191+/-0.199, I=0.287+/-0.284). Analysis of molecular variance showed that most of the ISSR variation (68.03%) in E. henryi occurred among populations. The estimated Nm from F (ST )was 0.235. It indicated that the fragmentation and isolation of populations might result from specific evolutionary history and anthropogenic activity. Consequently, genetic drift might play an important role in determining the genetic structure of E. henryi. Conservation strategies for this endangered species are proposed based on the genetic data.  相似文献   

19.
Abstract Enzyme electrophoresis was used to measure genetic variation in five populations of the rare diploid species Coreopsis latifolia which appears to be a relict taxon endemic to a small area of the southeastern United States. Gene diversity within the species as a whole is low compared to other species with similar ecological and life history traits. Also, gene diversity in C. latifolia is lower than nearly all other species of Coreopsis that have been examined. Larger populations contain significantly more variation at isozyme loci than do smaller populations. Populations of C. latifolia are deficient in heterozygotes relative to expected equilibrium values.  相似文献   

20.
BACKGROUND AND AIMS: Dioon angustifolium was considered within D. edule. Recent morphometric and allozyme studies on D. edule have shown that D. angustifolium has originated from geographic isolation and is therefore considered to be a separate species. This cycad is endemic to north-eastern Mexico and is known only from three populations in the Sierra Madre Oriental mountain chain. Its populations are small when compared with its southern relative D. edule. In this study, genetic variation was determined within and between populations of D. angustifolium and the genetic consequences of habitat fragmentation and isolation of populations of this species were assessed. METHODS: Allozyme electrophoresis of 14 presumptive loci was used. The data were analysed with statistical approximations for estimating genetic diversity, structure, gene flow and recent genetic bottlenecks. KEY RESULTS: Means and standard deviations of genetic diversity estimators were: number of alleles per locus (A = 1.67 +/- 0.23), percentage of polymorphic loci (P = 52.4 +/- 23 %) and expected heterozygosity (H(E) = 0.218 +/- 0.093). The genetic variation attributable to differences among populations was 16.7 %. Mean gene flow between paired populations was Nm = 1.55 +/- 0.67, which is similar to that reported for endemic plant species of narrow geographical distribution and species with gravity-dispersed seed. A recent bottleneck is detected in the populations studied. CONCLUSIONS: Dioon angustifolium presents high levels of genetic diversity compared with other cycad species, in spite of small population sizes. The recent bottleneck effect did not effectively reduce the genetic variation to the extent of eliminating these populations. The distribution of D. angustifolium appears to be the result of historical biogeographical effects related to the Pleistocene glaciations. It is recommended that this species be catalogued in the IUCN Red List of Threatened Species and conservation efforts be made to preserve it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号