首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 188 毫秒
1.
The articulation of annelids   总被引:12,自引:0,他引:12  
The aim of this paper is to assess the monophyly of the Annelida. Also, recent cladistic analyses of metazoan taxa, using a variety of data, have shown incongruities with regards to annelids and associated taxa that should be resolved. The Platyhelminthes is selected as the taxon to root our minimal length trees and polarise our characters in a parsimony analysis; ingroup taxa being Mollusca, Nemertea, Sipuncula, Echiura, Pogonophora, Vestimentifera, Euarthropoda, Onycho-phora, and the groups most commonly regarded as true ‘annelids’, the Clitellata and Polychaeta. We use 13 characters and a total of 33 states. This results in 18 minimal length trees of 23 steps. The consensus tree has the topology (Platyhelminthes (Nemertea (Sipuncula Mollusca (Echiura (Polychaeta (Vestimcntifera Pogonophora) Clitellata (Euarthropoda Onychophora)))))). The name Articulata is applied to the Clitellata, Euarthropoda, Onychophora, Pogonophora, Polychaeta, and Vestimentifera. The Vestimentifera is the sister group to, or more likely a clade within, the frenulate pogonophores, and the name Pogonophora is retained for this group. In half of the 18 minimal length trees, the traditionally formulated Annelida, i.e. Polychaeta and Clitellata, is paraphyletic if the Pogonophora are excluded. In the remaining minimal length trees, a monophyletic Annelida cannot be formulated. The name Annelida should not be used unless relationships within the Articulata are resolved to show it is a monophyletic taxon. The taxon name Articulata, originally formulated to include the Annelida and Arthropoda by Cuvier, is defined as the clade stemming from the first ancestor to show repetition of homologous body structures derived by teloblastic growth with a pygidial growth zone (segmentation) and longitudinal muscles broken into bands. The Articulata is considered, on current evidence, to consist of four monophyletic groups; the Arthropoda, Clitellata, Polychaeta, and Pogonophora, though the latter group may be a clade of polychaetes. If this is shown, the Pogonophora should revert to the original family name Lamellisabellidae Uschakov, 1933. An indented classification reflective of the cladistic pattern is provided. Other recent hypotheses about metazoan systematics arc analysed.  相似文献   

2.
Phylogeny of protostome worms derived from 18S rRNA sequences   总被引:13,自引:3,他引:10  
The phylogenetic relationships of protostome worms were studied by comparing new complete 18S rRNA sequences of Vestimentifera, Pogonophora, Sipuncula, Echiura, Nemertea, and Annelida with existing 18S rRNA sequences of Mollusca, Arthropoda, Chordata, and Platyhelminthes. Phylogenetic trees were inferred via neighbor-joining and maximum parsimony analyses. These suggest that (1) Sipuncula and Echiura are not sister groups; (2) Nemertea are protostomes; (3) Vestimentifera and Pogonophora are protostomes that have a common ancestor with Echiura; and (4) Vestimentifera and Pogonophora are a monophyletic clade.   相似文献   

3.
The phylogenetic position of Sipuncula, a group of unsegmented marine worms, has been controversial for several decades: Especially based on morphological data, closer relationships to Mollusca or Annelida were among the most favoured hypotheses. Increasing amounts of molecular data in recent years have consistently placed Sipuncula either in close affinity to or even within Annelida, the segmented worms, and rejected a close relationship to Mollusca. Yet, it remained uncertain whether Sipuncula is the sister group of Annelida or an annelid subtaxon. Therefore, herein we gathered data for five nuclear genes, which have been rarely used regarding Annelida and Sipuncula, and combined these with data for six previously used genes to further elucidate the phylogenetic position of Sipuncula. We also compiled a data set for 78 ribosomal proteins from publicly available genomic data sets. These are the two largest data sets for annelids with more than 10 taxa to date. All analyses placed Sipuncula within Annelida. For the first time, topology tests significantly rejected the possibility that Sipuncula is sister to Annelida. Thus, our analyses revealed that Sipuncula had secondarily lost segmentation. Given that unsegmented Echiura is also an annelid subtaxon, segmentation, a key character of Annelida, is much more variable than previously thought. Yet, this conclusion does not support the hypothesis that the last common ancestor of Annelida, Arthropoda and Chordata was segmented, assuming several losses along the branches leading to them. As yet no traces of segmentation could be shown in taxa exhibiting serially organized organ systems such as certain Mollusca, while in Sipuncula and Echiura such traces could be demonstrated. An independent origin of segmentation in Annelida, Arthropoda and Chordata thus appears to be more plausible and parsimonious.  相似文献   

4.
We estimated the phylogenetic relationships of 15 nemertean (phylum Nemertea) species from the four subclasses Hoplo-, Hetero-, Palaeo-, and Bdellonemertea with 18S rDNA sequence data. Three outgroup taxa were used for rooting: Annelida, Platyhelminthes, and Mollusca. Parsimony and maximum-likelihood analyses supported the monophyletic status of the Heteronemertea and a taxon consisting of hoplonemerteans and Bdellonemertea, while indicating that Palaeonemertea is paraphyletic. The monophyletic status of the two nemertean classes Anopla and Enopla is not supported by the data. The unambiguous clades are well supported, as assessed by a randomization test (bootstrapping) and branch support values.  相似文献   

5.
Molecular Phylogeny of Metazoan Intermediate Filament Proteins   总被引:7,自引:0,他引:7  
We have cloned cytoplasmic intermediate filament (IF) proteins from a large number of invertebrate phyla using cDNA probes, the monoclonal antibody IFA, peptide sequence information, and various RT-PCR procedures. Novel IF protein sequences reported here include the urochordata and nine protostomic phyla, i.e., Annelida, Brachiopoda, Chaetognatha, Echiura, Nematomorpha, Nemertea, Platyhelminthes, Phoronida, and Sipuncula. Taken together with the wealth of data on IF proteins of vertebrates and the results on IF proteins of Cephalochordata, Mollusca, Annelida, and Nematoda, two IF prototypes emerge. The L-type, which includes 35 sequences from 11 protostomic phyla, shares with the nuclear lamins the long version of the coil 1b subdomain and, in most cases, a homology segment of some 120 residues in the carboxyterminal tail domain. The S-type, which includes all four subfamilies (types I to IV) of vertebrate IF proteins, lacks 42 residues in the coil 1b subdomain and the carboxyterminal lamin homology segment. Since IF proteins from all three phyla of the chordates have the 42-residue deletion, this deletion arose in a progenitor prior to the divergence of the chordates into the urochordate, cephalochordate, and vertebrate lineages, possibly already at the origin of the deuterostomic branch. Four phyla recently placed into the protostomia on grounds of their 18S rDNA sequences (Brachiopoda, Nemertea, Phoronida, and Platyhelminthes) show IF proteins of the L-type and fit by sequence identity criteria into the lophotrochozoic branch of the protostomia. Received: 2 April 1998 / Accepted: 19 June 1998  相似文献   

6.
Cladistic analysis of traditional (i.e. morphological, developmental, ultrastructural) and molecular (18S rDNA) data sets (276+501 informative characters) provides a hypothesis about relationships of all meta-zoan higher taxa. Monophyly of Metazoa, Epith-eliozoa (= -03non-Porifera), Triploblastica, Mesozoa, Eutriploblastica (=Rhabditophora+Catenulida+“higher triploblasts”=Neotriploblastica, including Xeno- turbellida and Gnathostomulida), Rhabditophora, Syndermata (=“Rotifera”+Acanthocephala), Neotrichozoa (=Gastrotricha+Gnathostomulida), Nematozoa (=Nematoda+Nematomorpha), Panarthropoda (=Onychophora+Tardigrada+ Arthropoda), Cephalorhyncha, Deuterostomia, Ambulacralia (=Hemichordata+Echinodermata), Chordata, Phoronozoa (=Phoronida+“Brachiopoda”), Bryozoa, Trochozoa (=Eutrochozoa+Entoprocta+ Cycliophora), Eutrochozoa, and Chaetifera (=Annelida+ Pogonophora+Echiura) is strongly supported. Cnidaria (including Myxozoa), Ecdysozoa (=Cepha- lorhyncha + Nematozoa + Chaetognatha + Panarthropoda), Eucoelomata (=Bryozoa+Phoronozoa+Deuterostomia+Trochozoa, possibly including also Xenoturbellida), and Deuterostomia+Phoronozoa probably are monophyletic. Most traditional “phyla” are monophyletic, except for Porifera, Cnidaria (excluding Myxozoa), Platyhelminthes, Brachiopoda, and Rotifera. Three “hot” regions of the tree remain quite unresolved: basal Epitheliozoa, basal Triploblastica, and basal Neotriploblastica. A new phylogenetic classification of the Metazoa including 35 formally recognized phyla (Silicispongea, Calcispongea, Placozoa, Cnidaria, Ctenophora, Acoela, Nemertodermatida, Orthonecta, Rhombozoa, Rhabditophora, Catenulida, Syndermata, Gnathostomulida, Gastrotricha, Cephalorhyncha, Chaetognatha, Nematoda, Nematomorpha, Onychophora, Tardigrada, Arthropoda, Echinodermata, Hemichordata, Chordata, Phoronozoa, Bryozoa s. str., Xenoturbellida, Entoprocta, Cycliophora, Nemertea, Mollusca, Sipuncula, Echiura, Pogonophora, and Annelida) and few i ncertae sedis g roups (e.g. Myzostomida and Lobatocerebromorpha) is proposed.  相似文献   

7.
Inferring the relationships among Bilateria has been an active and controversial research area since Haeckel. The lack of a sufficient number of phylogenetically reliable characters was the main limitation of traditional phylogenies based on morphology. With the advent of molecular data, this problem has been replaced by another one, statistical inconsistency, which stems from an erroneous interpretation of convergences induced by multiple changes. The analysis of alignments rich in both genes and species, combined with a probabilistic method (maximum likelihood or Bayesian) using sophisticated models of sequence evolution, should alleviate these two major limitations. We applied this approach to a dataset of 94 genes and 79 species using CAT, a previously developed model accounting for site-specific amino acid replacement patterns. The resulting tree is in good agreement with current knowledge: the monophyly of most major groups (e.g. Chordata, Arthropoda, Lophotrochozoa, Ecdysozoa, Protostomia) was recovered with high support. Two results are surprising and are discussed in an evo-devo framework: the sister-group relationship of Platyhelminthes and Annelida to the exclusion of Mollusca, contradicting the Neotrochozoa hypothesis, and, with a lower statistical support, the paraphyly of Deuterostomia. These results, in particular the status of deuterostomes, need further confirmation, both through increased taxonomic sampling, and future improvements of probabilistic models.  相似文献   

8.
Triploblastic relationships were examined in the light of molecular and morphological evidence. Representatives for all triploblastic "phyla" (except Loricifera) were represented by both sources of phylogenetic data. The 18S ribosomal (rDNA) sequence data for 145 terminal taxa and 276 morphological characters coded for 36 supraspecific taxa were combined in a total evidence regime to determine the most consistent picture of triploblastic relationships for these data. Only triploblastic taxa are used to avoid rooting with distant outgroups, which seems to happen because of the extreme distance that separates diploblastic from triploblastic taxa according to the 18S rDNA data. Multiple phylogenetic analyses performed with variable analysis parameters yield largely inconsistent results for certain groups such as Chaetognatha, Acoela, and Nemertodermatida. A normalized incongruence length metric is used to assay the relative merit of the multiple analyses. The combined analysis having the least character incongruence yields the following scheme of relationships of four main clades: (1) Deuterostomia [((Echinodermata + Enteropneusta) (Cephalochordata (Urochordata + Vertebrata)))]; (2) Ecdysozoa [(((Priapulida + Kinorhyncha) (Nematoda + Nematomorpha)) ((Onychophora + Tardigrada) Arthropoda))]; (3) Trochozoa [((Phoronida + Brachiopoda) (Entoprocta (Nemertea (Sipuncula (Mollusca (Pogonophora (Echiura + Annelida)))))))]; and (4) Platyzoa [((Gnathostomulida (Cycliophora + Syndermata)) (Gastrotricha + Plathelminthes))]. Chaetognatha, Nemertodermatida, and Bryozoa cannot be assigned to any one of these four groups. For the first time, a data analysis recognizes a clade of acoelomates, the Platyzoa (sensu Cavalier-Smith, Biol. Rev. 73:203-266, 1998). Other relationships that corroborate some morphological analyses are the existence of a clade that groups Gnathostomulida + Syndermata (= Gnathifera), which is expanded to include the enigmatic phylum Cycliophora, as sister group to Syndermata.  相似文献   

9.
1. A phylogenetic study of oxytocin (OXT)-like immunoreactive cells was performed by the PAP method in the central nervous system of invertebrates. 2. The immunoreactivity was detected in the nerve cells of Hydra magnipapillata of the Coelenterata; Neanthes japonica and Pheretima communissima of the Annelida; Oncidium verrucosum, Limax marginatus and Meretrix lamarckii of the Mollusca; and Baratha brassica of the Arthropoda. 3. No immunoreactive cells were found in Bipalium sp. of the Platyhelminthes; Pomacea canaliculata, Aplysia kurodai, Bradybaena similaris and Achatina fulica of the Mollusca; and Gnorimosphaeroma rayi, Procambarus clarkii, Hemigrapsus sanguineus, Helice tridens and Gryllus bimaculatus of the Arthropoda; Asterina pectinifera of the Echinodermata; and Halocynthia roretzi of the Protochordata. 4. These results demonstrate that an OXT-immunoreactive substance is widely present not only in vertebrates but also in invertebrates. 5. OXT seems to have been introduced into these invertebrates at an early stage of their phylogenetic history.  相似文献   

10.
Recent hypotheses on metazoan phylogeny have recognized three main clades of bilaterian animals: Deuterostomia, Ecdysozoa and Lophotrochozoa. The acoelomate and 'pseudocoelomate' metazoans, including the Platyhelminthes, long considered basal bilaterians, have been referred to positions within these clades by many authors. However, a recent study based on ribosomal DNA placed the flatworm group Acoela as the sister group of all other extant bilaterian lineages. Unexpectedly, the nemertodermatid flatworms, usually considered the sister group of the Acoela together forming the Acoelomorpha, were grouped separately from the Acoela with the rest of the Platyhelminthes (the Rhabditophora) within the Lophotrochozoa. To re-evaluate and clarify the phylogenetic position of the Nemertodermatida, new sequence data from 18S ribosomal DNA and mitochondrial genes of nemertodermatid and other bilaterian species were analysed with parsimony and maximum likelihood methods. The analyses strongly support a basal position within the Bilateria for the Nemertodermatida as a sister group to all other bilaterian taxa except the Acoela. Despite the basal position of both Nemertodermatida and Acoela, the clade Acoelomorpha was not retrieved. These results imply that the last common ancestor of bilaterian metazoans was a small, benthic, direct developer without segments, coelomic cavities, nephrida or a true brain. The name Nephrozoa is proposed for the ancestor of all bilaterians excluding the Nemertodermatida and the Acoela, and its descendants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号