首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
正Aristolochic acids (AAs), previously rarely mentioned compounds, have been brought into the public eye several times since the beginning of this century; and currently, they have drawn even greater attention due to their association with liver cancer, as was recently reported by Ng et al.(Ng et al., 2017). The authors sequenced the whole exomes of 98patients with hepatocellular carcinomas (HCC) from Taiwan and reported that 78%of the cases carried the AAs mutational signature, A:TT:A transversion. Further examination of publicly available data from Chinese patients with HCC  相似文献   

2.
New precolumn derivatizing reagents for analysis of amino acids by HPLC—butylisothiocyanate (BITC) and benzylisothiocyanate (BZITC)—reacted quantitatively with 22 standard amino acids and the amino acids in the acid hydrolysate of food and protein standard, bovine serum albumin (BSA), at 40°C for 30 min to yield butylthiocarbamyl (BTC) amino acids and at 50°C for 30 min to yield benzylthiocarbammyl (BZTC) amino acids. BTC and BZTC amino acids were successfully separated in 35 min on the reversed-phase Nova-Pak C18 column (30 cm × 3.9 mm, 4 μm). The optimum wavelengths for determination of BTC and BZTC derivatives were 240 nm and 246 nm, respectively. Analysis of the results obtained with BSA and food samples as BTC and BZTC derivatives showed good agreement with those determined as ion-exchange chromatography and data presented in the literature. The advantage of BITC reagent over the phenylisothiocyanate (PITC) and BZITC was that it had high volatility, so the excess reagent and by-products were easily removed in about 10 min, compared to about 1 h in the PITC and BZITC reagents. In the BTC and BZTC derivatives, cystine and cysteine were determined separately, but in the PTC amino acids derivatized with PITC reagent they were resolved into single peak.  相似文献   

3.
A series of high pressure liquid chroamtography analyses revealed the presence of five phenolic acids in rye caryopses (vanillic, caffeic, p-coumaric, ferulic and sinapic), three of which (p-coumaric, ferulic and sinapic) were found in the free phenolic fraction. Ferulic acid was predominant, both among free acids and total phenolic acids (i.e. free, liberated from soluble esters and glycosides). The highest content of the free phenolic acids in rye caryopses was observed at the beginning of development, when on 22 DAF it was estimated at 11.55 μg·g−1 DW. During dehydratation the total level of free phenolic acids in rye caryopses decreased in all investigated samples. Although total phenolic acids contents in all samples of unripe rye caryopses always decreased after dehydration, in rye sample collected in full ripeness (57 DAF), the amount of these compounds increased after the enforced dehydration. It should be added that in ester-bound-soluble phenolic acids fraction (the largest part in the total phenolic acids fraction), irrespective of the total amount decrease, much increase of sinapic acid content in this fraction was observed after dehydratation treatment in all investigated samples of caryopses of various ripeness. During the development and ripening of rye caryopses, a gradual increase in the precocious germination ability of the grain was observed. The enforced dehydration stimulated the process of precocious germination of developing and ripening rye caryopses. A possible role of phenolics in preventing precocious germination and acclimation to dehydration of developing and ripening rye grains is discussed.  相似文献   

4.
Summary. A method based on near-infrared spectroscopy (NIRS) was developed for the rapid and non-destructive determination and quantification of solid and dissolved amino acids. The statistical results obtained after optimisation of measurement conditions were evaluated on the basis of statistical parameters, Q-value (quality of calibrations), R2, standard error of estimation (SEE), standard error of prediction (SEP), BIAS applying cluster and different multivariate analytical procedures. Experimental optimisation comprised the selection of the highest suitable optical thin-layer (0.5, 1.0, 1.5, 2.0, 2.5, 3.0 mm), sample temperature (10–30 °C), measurement option (light fibre, 0.5 mm optical thin-layer; boiling point tube; different types of cuvettes) and sample concentration in the range between 100 and 500 ppm. Applying the optimised conditions and a 115-QS Suprasil? cuvette (V = 400 μl), the established qualitative model enabled to distinguish between different dissolved amino acids with a Q-value of 0.9555. Solid amino acids were investigated in the transflectance mode, allowing to differentiate them with a Q-value of 0.9155. For the qualitative and quantitative analysis of amino acids in complex matrices NIRS was established as a detection system directly onto the plate after prior separation on cellulose based thin-layer chromatography (TLC) sheets employing n-butanol, acetic acid and distilled water at a ratio of 8:4:2 (v/v/v) as an optimised mobile phase. Due to the prior separation step, the established calibration curve was found to be more stable than the one calculated from the dissolved amino acids. The found lower limit of detection was 0.01 mg/ml. Finally, this optimised TLC-NIRS method was successfully applied for the qualitative and quantitative analysis of L-lysine in apple juice. NIRS is shown not only to offer a fast, non-destructive detection tool but also to provide an easy-to-use alternative to more complicated detection methods such as mass spectrometry (MS) for qualitative and quantitative TLC analysis of amino acids in crude samples.  相似文献   

5.
The norepinephrine transporter(NET) is a member of the Na^ /Cl^- dependent neurotransmitter transporter family and constitutes the target of several clinically important antidepressants.To delineate the critical amino acid residues and the function of C-terminal in regulating transport activity of NET,here we constructed two site mutants (V70F,F72V;V70I,F72V) and one C-terminal truncated mutant (Δ 611-617).The wild type and mutants of NET were expressed in Xenopus oocytes by injection of their cRNA.We found that all of these mutants lost their transport activity.These results indicate that the amino acid residues of V70 and F72,and the last seven amino acids of C-terminal are essential to the transport activity of NET.  相似文献   

6.
Based on reported TMV-U1 sequence, primers were designed and fragments covering the entire genome of TMV broad bean strain (TMV-B) were obtained with RT-PCR. These fragments were cloned and sequenced and the 5' and 3' end sequences of genome were confirmed with RACE. The complete sequence of TMV-B comprises 6 395 nucleotides (nt) and four open reading frames, which correspond to 126 ku (1 116 amino acids), 183 ku (1 616 amino acids), 30 ku (268 amino acids) and 17.5 ku proteins (159 amino acids). The complete nucleotide sequence of TMV-B is 99.4% identical to that of TMV-U1. The two virus isolates share the same sequence of 5', 3' non-coding region and 17.5 K ORF, and 6, 1 and 3 amino acid changes are found in 126 K protein, 54 K protein and 30 K protein, respectively. The possible mechanism on the infection of TMV-B in Vicia faba is discussed.  相似文献   

7.
Diets with a higher proportion of polyunsaturated fatty acids (i.e., linoleic acid) have decreased iron absorption and utilization compared with diets containing a higher proportion of the saturated fatty acid stearic acid (e.g., beef tallow). However, less is known regarding the influence of other polyunsaturated or monounsaturated fatty acids, along with higher dietary iron, on iron absorption and utilization. The present study was conducted to compare the effects of dietary fat sources known to vary in (n-3), (n-6), and (n-9) fatty acids on iron utilization and liver mineral concentrations. Male weanling rats were fed a diet containing 10, 35, or 100 μg/g iron in combination with saffower oil, flaxseed oil, olive oil, or beef tallow for 8 wk. Indicators of iron status, iron utilization, and liver iron concentrations were unaffected by an interaction between the fat source and iron concentration. Plasma copper was the only variable affected by an interaction between the fat source and dietary iron. Findings of this study demonstrate that flaxseed oil and olive oil may alter tissue minerals and affect iron utilization. Further studies should be conducted to establish the effect of varying (n-3), (n-6), and (n-9) fatty acids on trace mineral status and iron utilization. Data were presented in part at Experimental Biology 2000 as a poster session. A. D. Shotton and E. A. Droke, Dietary fat and iron modify immune function, FASEB J. 14, A239 (2000).  相似文献   

8.
Lin R Y  Rong H  Zhou J J  Yu C P  Ye C Y  Chen L S  Lin W X 《农业工程》2007,27(9):3644-3654
Field performance of rice allelopathic potential is indirectly regulated by the microflora in the rhizosphere. The present study aimed to investigate the dynamics of microbial populations and their functional diversities in the seedling rhizospheres of rice cultivars with varied allelopathic activities by employing agar plate bioassay, fumigation and BIOLOG analysis. Rice cultivars significantly affected the microbial carbon content in their associated rhizospheric soil. The microbial carbon contents were ranked in a decreasing order as Iguape Cateto (441.0 mg·kg–1) > IAC47 (389.7 mg·kg–1) > PI312777 (333.2 mg·kg–1) > Lemont (283.8 mg·kg–1) with the nil-rice control soil of 129.3 mg·kg–1. Similarly, the respiration rate of the soils was 1.404, 1.019, 0.671 and 0.488 μgC·g–1· h–1 for PI312777, Iguape Cateto, IAC47 and Lemont, respectively. The respiration rate was only 0.304 μ gC·g–1·h–1 for the control soil. The microbial flora in the rhizospheric soil of different rice cultivars was dominated by bacteria (58.4%–65.6%), followed by actinomycete (32.2%–39.4%) and fungi (2.2%–2.8%). BIOLOG analysis showed that the value of Average Well Color Development (AWCD) differed significantly among rice cultivars. It was always the highest in the rhizospheric soil of the strongly allelopathic rice cv. PI312777, and the lowest in the rhizospheric soil of the poorly allelopathic rice cv. Lemont. The AWCD value reached the maximum in all the sampled soils after 144 hours of incubation. The AWCD values from the rhizospheric soils of PI312777, IAC47, Iguape Cateto and Lemont were 1.89, 1.79, 1.60 and 1.43 times higher than that of the control soil. Principal Component Analysis (PCA) identified 3 principal component factors (PCF) in relation to carbon sources, accounting for 70.1%, 11.3% and 7.0% of the variation, respectively. 19 categories of carbon sources were significantly positively correlated to the 3 principal components. Phenolic acids, carbohydrates, amino acids and amides were significantly correlated to the principal component 1, phenolic acids, carbohydrates and fatty acids to the principal component 2, and carbohydrates and hydroxylic acids to the principal component 3. Amino acids and amides were the two main carbon sources separating the 3 principal component factors. In addition, the total microbial population in the rhizospheric soil was significantly positively correlated with AWCD, microbial biomass carbon, microbial respiration and Shannon index. There was a significantly positive correlation between the total microbial population and the inhibition rate (IR) on the root length of lettuce owing to the different allelopathic activities of the rice cultivars. These results suggest that changes in microbial population, activity and functional diversity in the rhizospheres are highly cultivar-dependent. These changes might play an important role in governing the rice allelopathic activity in the field.  相似文献   

9.
Field performance of rice allelopathic potential is indirectly regulated by the microflora in the rhizosphere. The present study aimed to investigate the dynamics of microbial populations and their functional diversities in the seedling rhizospheres of rice cultivars with varied allelopathic activities by employing agar plate bioassay, fumigation and BIOLOG analysis. Rice cultivars significantly affected the microbial carbon content in their associated rhizospheric soil. The microbial carbon contents were ranked in a decreasing order as Iguape Cateto (441.0 mg·kg–1) > IAC47 (389.7 mg·kg–1) > PI312777 (333.2 mg·kg–1) > Lemont (283.8 mg·kg–1) with the nil-rice control soil of 129.3 mg·kg–1. Similarly, the respiration rate of the soils was 1.404, 1.019, 0.671 and 0.488 μgC·g–1· h–1 for PI312777, Iguape Cateto, IAC47 and Lemont, respectively. The respiration rate was only 0.304 μ gC·g–1·h–1 for the control soil. The microbial flora in the rhizospheric soil of different rice cultivars was dominated by bacteria (58.4%–65.6%), followed by actinomycete (32.2%–39.4%) and fungi (2.2%–2.8%). BIOLOG analysis showed that the value of Average Well Color Development (AWCD) differed significantly among rice cultivars. It was always the highest in the rhizospheric soil of the strongly allelopathic rice cv. PI312777, and the lowest in the rhizospheric soil of the poorly allelopathic rice cv. Lemont. The AWCD value reached the maximum in all the sampled soils after 144 hours of incubation. The AWCD values from the rhizospheric soils of PI312777, IAC47, Iguape Cateto and Lemont were 1.89, 1.79, 1.60 and 1.43 times higher than that of the control soil. Principal Component Analysis (PCA) identified 3 principal component factors (PCF) in relation to carbon sources, accounting for 70.1%, 11.3% and 7.0% of the variation, respectively. 19 categories of carbon sources were significantly positively correlated to the 3 principal components. Phenolic acids, carbohydrates, amino acids and amides were significantly correlated to the principal component 1, phenolic acids, carbohydrates and fatty acids to the principal component 2, and carbohydrates and hydroxylic acids to the principal component 3. Amino acids and amides were the two main carbon sources separating the 3 principal component factors. In addition, the total microbial population in the rhizospheric soil was significantly positively correlated with AWCD, microbial biomass carbon, microbial respiration and Shannon index. There was a significantly positive correlation between the total microbial population and the inhibition rate (IR) on the root length of lettuce owing to the different allelopathic activities of the rice cultivars. These results suggest that changes in microbial population, activity and functional diversity in the rhizospheres are highly cultivar-dependent. These changes might play an important role in governing the rice allelopathic activity in the field.  相似文献   

10.
Mass spectrometry(MS)-based omics technologies are now widely used to profile small molecules in multiple matrices to confer comprehensive snapshots of cellular metabolic phenotypes.The metabolomes of cells,tissues,and organisms comprise a variety of molecules including lipids,amino acids,sugars,organic acids,and so on.Metabolomics mainly focus on the hydrophilic classes,while lipidomics has emerged as an independent omics owing to the complexities of the organismal lipidomes.The potential roles of lipids and small metabolites in disease pathogenesis have been widely investigated in various human diseases,but system-level understanding is largely lacking,which could be partly attributed to the insufficiency in terms of metabolite coverage and quantitation accuracy in current analytical technologies.While scientists are continuously striving to develop high-coverage omics approaches,integration of metabolomics and lipidomics is becoming an emerging approach to mechanistic investigation.Integration of metabolome and lipidome offers a complete atlas of the metabolic landscape,enabling comprehensive network analysis to identify critical metabolic drivers in disease pathology,facilitating the study of interconnection between lipids and other metabolites in disease progression.In this review,we summarize omics-based findings on the roles of lipids and metabolites in the pathogenesis of selected major diseases threatening public health.We also discuss the advantages of integrating lipidomics and metabolomics for in-depth understanding of molecular mechanism in disease pathogenesis.  相似文献   

11.
The compositions and contents of astaxanthin esters and fatty acids in four types of Haematococcus pluvialis cells were studied by HPLC and GC-MS. Results showed that the synthesis and accumulation of astaxanthin was independent of the formation of cysts, but was highly correlated with the synthesis and accumulation of fatty acids, though it is an well known phenomenon that the accumulation of astaxanthin is usually accompanied by the formation of cyst. The red cysts contain more than 30% of fatty acids, with 81% of the unsaturated fatty acids. Taken together, besides a resource of astaxanthin, H. pluvialis would be a good resource of valuable fatty acids.  相似文献   

12.
Summary. Intracerebroventricular (i.c.v.) injection of L-serine was shown to have sedative and hypnotic effects on neonatal chicks under acute stressful conditions. To clarify the central mechanism of these effects of L-serine, two experiments were done. First, we focused on the glycogenic pathway in which L-serine is converted into pyruvate and finally glucose. I.c.v. administration of pyruvate (0.84 μmol) did not induce any behavioral and endocrinological changes, while L-serine and glucose triggered sedative and hypnotic effects. Secondly, the relationship between the sedation by L-serine and the metabolism into other amino acids which have sedative effects was investigated in the telencephalon and diencephalon. In both brain areas, a dose-dependent increase was seen in L-serine, although other amino acids were not changed. In the present study, it was concluded that the sedative action of L-serine was not due to the action of its metabolite pyruvate, or to the action of other amino acids. Authors’ address: M. Furuse, PhD, Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan  相似文献   

13.
To evaluate the role of bacterial symbionts ( Buchnera spp. ) in the black bean aphids ( Aphis craccivora Koch), the aphids were treated with the antibiotic, rifampicin, to eliminate their intracellular symbiotic bacteria. Analysis of protein and amino acid concentration in 7-day-old of aposymbiotic aphids showed that the total protein content per mg fresh weight was significantly reduced by 29 %, but free amino acid titers were increased by 17% . The ratio of the essential amino acids was in general only around 20% essential amino acids in phloem sap of broad bean, whereas it was 44% and 37% in symbiotic and aposymbiotic aphids, respectively,suggesting that the composition of the free amino acids was unbalanced. For example, the essential amino acid,threonine represented 21. 6% of essential amino acids in symbiotic aphids, but it was only 16.7% in aposymbiotic aphids. Likewise, two nonessential amino acids, tyrosine and serine, represented 8.9% and 5.6% of total amino acids in symbiontic aphids, respectively, but they enhanced to 21.1% and 13.6% in aposymbiotic aphids. It seems likely that the elevated free amino acid concentration in aposymbiotic aphids was caused by the limited protein anabolism as the result of the unbalanced amino acid composition.  相似文献   

14.
YUQINGMING  LANMA 《Cell research》1998,8(4):303-310
Human rhodopsin kinase (RK) and a carboxyl terminus-truncated mutant RK lacking the last 59 amino acids (RKC) were expressed in human embryonic kidney 293 cells to investigate the role of the carboxyl terminus of RK in recognition and phosphorylation of rhodopsin.RKC,like the wild-type RK,was detected in both plasma membranes and cytosolic fractions.The Cterminal truncated rhodopsin kinase was unable to phosphorylate photo-activated rhodopsin,but possesses kinase activity similar to the wild-type RK in phosphorylation of small peptide substrate.It suggests that the truncation did not disturb the gross structures of RK catalytic domain.Our results also show that RKC failed to translocate to photo-activated rod out segments.Taken together,our study demonstrate the carboxyl terminus of RK is required for phosphorylation of photo-activated rhodopsin and strongly indicate that carboxyl-terminus of RK may be involved in interaction with photo-activated rhodopsin.  相似文献   

15.
Summary The dialysed humic acids obtained from a forest Mull by extraction of a diluted solution of sodium carbonate are enzymatically active. It is found by radiorespirometry that the humic acids act on thel-tryptophan carboxyl C14, although thed-tryptophan carboxyl suffers no attack. The methylene group and the indole and benzene nuclei are not broken down. Only the carboxyl function is mineralised. Radiochromatography shows that through the action of the humic acids the tryptophan is broken down primarily into indoleacetamide and secondarily into β-indoleacetic acid. From the nature of these compounds it is assumed that the humic acids have an oxygenas effect on thel-tryptophan. The enzymatic activity has its optimum value at 65°C. It is partially inhibited by lyophilisation and by toluene. The pyridoxal phosphate (0.1 μM) has a slight activating influence. The alkalis and mineral acids decompose the enzyme. We can therefore see just how much importance attaches to the humic matter, not only as an energy substrate reserve for the micro-organisms and plants but also as a site for biological activities which are quite distinct from any microbial proliferation and the role of which in plants has still to be studied. It would be of interest to determine the presence of this enzymatic system in other pedologically defined soils and to study it in correlation with their fertility. In addition, there remains the task of detecting the microbial agents in the soil which contribute to the formation of this remarkable enzymatic system.  相似文献   

16.
A 4.6 kb DNA fragment was cloned from the DNA library of Streptomyces ansochromogenes using a partial DNA fragment located in the downstream of promoter-P_(TH4) as probe. The experiments revealed that this DNA fragment consists of saw D gene and a 1.4 kb Pvu Ⅱ fragment which can accelerate mycelium formation of S. ansochromogerms. The nucleofide sequence of 1.4 kb DNA fragment was determined and analysed; the result indicated that the fragment contains one complete open reading frame (ORF) which encodes a protein with 213 amino acids, and this gene was desiguated as samfR. The deduced protein has 36% amino acid identities and 52% amino acid similarities in comparison with that encoded by hppR gene, which is involved in the regulation of catabolism for 3-(3-hydroxyphenyl) propionate (3HPP) in Rhodococcus globerulus. The function of samfR gene was studied using strategy of gene disruption, and the resulting samfR mutant failed to form aerial hyphae and spores, its development and differentiation stopped  相似文献   

17.
Systems biology is a new and rapidly developing research area in which,by quantitativelydescribing the interaction among all the individual components of a cell,a systems-level understanding of abiological response can be achieved.Therefore,it requires high-throughput measurement technologies forbiological molecules,such as genomic and proteomic approaches for DNA/RNA and protein,respectively.Recently,a new concept,lipidomics,which utilizes the mass spectrometry(MS)method for lipid analysis,has been proposed.Using this lipidomic approach,the effects of N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)on sphingomyelin metabolism,a major class of sphingolipids,were evaluated.Sphingomyelin moleculeswere extracted from cells and analyzed by matrix-assisted laser desorption ionization-time of flight MS.Itwas found that MNNG induced profound changes in sphingomyelin metabolism,including the appearance ofsome new sphingomyelin species and the disappearance of some others,and the concentrations of severalsphmgomyelin species also changed.This was accompanied by the redistribution of acid sphingomyelinase(ASM),a key player in sphingomyelin metabolism.On the other hand,imipramine,an inhibitor of ASM,caused the accumulation of sphingomyelin.It also prevented some of the effects of MNNG,as well as theredistribution of ASM.Taken together,these data suggested that the lipidomic approach is highly effectivefor the systematic analysis of cellular lipids metabolism.  相似文献   

18.
The influence of abscisic acid (ABA) on the process of polysome formation and synthesis of newly-formed proteins by different polysome populations was studied. Triticale caryopses were germinated in water or various ABA concentrations for 48 hrs, and afterwards they were transferred to a solution of 14C-amino acids and germinated for an additional 30 min. Embryos were separated from caryopses, and four polysome populations were isolated: the FP (free polysomes), MBP (membrane-bound polysomes), CBP (cytoskeleton-bound polysomes) and CMBP (cytoskeleton-membrane-bound polysomes). ABA retarded both the process of polysome formation and their activity in forming new proteins in vivo in all studied fractions. Participation of polysomes in total ribosomal materials (sub-units, monosomes and polysomes) of each polysome population in the control sample was as follows: FP — 77; MBP — 72; CBP — 70 and CMBP — 66 %, whereas in sample treated by ABA (100 μM) it was accordingly: 17; 23; 27 and 28%. The largest population made up FP (in control sample 69%), participation of MBP was always lower and ranged from about 19 to 30 %. Participation of polysome populations bound with the cytoskeleton CBP and CMBP, both in control sample as well as in samples treated with 1 and 10 μM ABA solution, was only a few per cent. It should be noted that when the ABA concentration was higher (100 μM) (process of germination was strongly inhibited), participation of those two populations (CBP and CMBP) was much increased in embryos, respectively to about 18 and 20 %. In both the control group and in embryonal tissue treated with ABA increasing incorporation of radioactive precursors to newly-formed proteins in vivo in fractions of polysomes isolated by following buffers: C (FP), C + PTE (MBP), C + Tris (CBP) and buf. U (CMBP) was observed. It should be noted, that the biggest incorporation of 14C-amino acids into nascent polypeptide chains was found in the last polysome population (CMBP). In the sample treated with ABA (100 μM) the activity of this fraction (CMBP) in forming new proteins is several times, and in the case of FP dozens of times, more intense. Increased participation of CBP and CMBP in embryos of triticale caryopses treated with ABA (100 μM) and the largest incorporation of 14C-amino acids into nascent polypeptide chains synthesised by CMBP, may indicate the important role of proteins formed by polysomes associated with cytoskeleton in inhibition of germination and seedling growth by ABA.  相似文献   

19.
A comparative kinetic study on the poly(gallic acid disulfide) (poly(DSGA)) inhibition of the iodide ion oxidation and on the 2-hydroxy-3,5-di-tert-butyl-N-phenylaniline (butaminophene) inhibition of 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation involving human thyroid peroxidase (hTPO) and horseradish peroxidase (HRP) was performed. The inhibition processes were characterized with the inhibition constantsK i and stoichiometric inhibition coefficientsf, indicating the number of radical particles perishing on one inhibitor molecule. In the case of poly(DSGA), theK i values for the I oxidation were 0.60 and 0.04 μM, and the coefficientsf were 13.6 and 16.5 for hTPO and HRP, respectively, which evidences the regeneration and high effectiveness of the polymeric inhibitor. In the case of butaminophene, theK i values for TMB oxidation were 38 and 46 μM for hTPO and HRP, respectively. The coefficientsf were 1.33 and 1.47, respectively, to reveal that butaminophene does not regenerate. The inhibition mechanisms for I and TMB oxidation involving the two peroxidases are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号