首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up‐regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress‐up‐regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide‐type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress‐up‐regulated genes and cause a series of physiological and biochemical resistant responses.  相似文献   

4.
5.
6.
Histone H2B monoubiquitination (H2Bub1) is recognized as a regulatory mechanism that controls a range of cellular processes. We previously showed that H2Bub1 was involved in responses to biotic stress in Arabidopsis. However, the molecular regulatory mechanisms of H2Bub1 in controlling responses to abiotic stress remain limited. Here, we report that HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 played important regulatory roles in response to salt stress. Phenotypic analysis revealed that H2Bub1 mutants confer decreased tolerance to salt stress. Further analysis showed that H2Bub1 regulated the depolymerization of microtubules (MTs), the expression of PROTEIN TYROSINE PHOSPHATASE1 (PTP1) and MAP KINASE PHOSPHATASE (MKP) genes – DsPTP1, MKP1, IBR5, PHS1, and was required for the activation of mitogen‐activated protein kinase3 (MAP kinase3, MPK3) and MPK6 in response to salt stress. Moreover, both tyrosine phosphorylation and the activation of MPK3 and MPK6 affected MT stability in salt stress response. Thus, the results indicate that H2Bub1 regulates salt stress‐induced MT depolymerization, and the PTP–MPK3/6 signalling module is responsible for integrating signalling pathways that regulate MT stability, which is critical for plant salt stress tolerance.  相似文献   

7.
  • H3K9ac, an epigenetic marker, is widely distributed in plant genomes. H3K9ac enhances gene expression, which is highly conserved in eukaryotes. However, genome‐wide studies of H3K9ac in monocot species are limited, and the changes in H3K9ac under drought stress for individual genes are still not clear.
  • We analysed changes in the H3K9ac level of Brachypodium distachyon under 20% PEG‐6000‐simulated drought stress conditions. We also performed chromatin immunoprecipitation, followed by next generation sequencing (ChIP‐seq) on H3K9ac to reveal changes in H3K9ac for individual genes at the genome‐wide level.
  • Our study showed that H3K9ac was mainly enriched in gene exon regions. Drought increased or decreased the H3K9ac level at specific genomic loci. We identified 40 genes associated with increased H3K9ac levels and 36 genes associated with decreased H3K9ac levels under drought stress. Further, RT‐qPCR analyses showed that H3K9ac was positively associated with gene expression of those drought‐responsive genes.
  • We conclude that H3K9ac enhances the expression level of a large number of drought‐responsive genes under drought stress in B. distachyon. The data presented here will help to reveal the correlation of some specific drought‐responsive genes and their enriched H3K9ac levels in the model plant B. distachyon.
  相似文献   

8.
Phytochrome‐interacting factor 1 (PIF1) inhibits light‐dependent seed germination. The specific function of PIF1 in seed germination is partly due to its high level of expression in imbibed seeds, but the associated regulatory factors have not been identified. Here we show that mutation of the early flowering in short days (EFS) gene, encoding an H3K4 and H3K36 methyltransferase, decreases the level of H3K36me2 and H3K36me3 but not H3K4me3 at the PIF1 locus, reduces the targeting of RNA polymerase II to the PIF1 locus, and reduces mRNA expression of PIF1 in imbibed seeds. Consistently, the efs mutant geminated even under the phyBoff condition, and had an expression profile of PIF1 target genes similar to that of the pif1 mutant. Introduction of an EFS transgene into the efs mutant restored the level of H3K36me2 and H3K36me3 at the PIF1 locus, the high‐level expression of PIF1 mRNA, the expression pattern of PIF1 target genes, and the light‐dependent germination of these seeds. Introduction of a PIF1 transgene into the efs mutant also restored the expression pattern of PIF1 target genes and light‐dependent germination in imbibed seeds, but did not restore the flowering phenotype. Taken together, our results indicate that EFS is necessary for high‐level expression of PIF1 mRNA in imbibed seeds.  相似文献   

9.
以导入大肠杆菌过氧化氢酶基因KatE的T3代转基因棉花为供试材料,经卡那霉素检测和PCR鉴定,将筛选出的阳性转基因植株与对照棉花进行整个生育期的持续水分胁迫处理直至收获,比较材料间的生理生化指标的差异,鉴定转基因植株的耐旱能力。结果显示:(1)干旱胁迫持续至初蕾期时,转基因棉花与对照植株间各项抗旱生理指标差异均未达到显著水平。(2)水分胁迫持续至盛蕾和盛花期时,转基因棉花叶片相对含水量、光系统Ⅱ最大光化学效率(Fv/Fm)、CAT活性,以及叶片的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均显著或极显著高于对照植株,叶绿素含量也都明显高于对照植株。干旱胁迫持续至吐絮期时,转基因棉花的株高、果枝数和铃数均显著或极显著高于对照植株,且转基因棉花和对照的籽棉产量分别比正常灌溉处理降低57.5%和60.1%,全生育期的水分胁迫严重影响了棉花籽棉产量,但转基因棉花的籽棉产量仍显著高于对照。研究表明,在新疆石河子当地自然降水(干旱胁迫)条件下,转KatE基因棉花表现出了较好的生理和生长优势,KatE基因有助于提高棉花的抗旱性。  相似文献   

10.
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.  相似文献   

11.
Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H2O2, a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss‐of‐function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone‐like protein and interacted with stress‐related HSP40 and 2OG‐Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone‐like protein that possibly prevents drought stress‐related proteins from inactivation.  相似文献   

12.
Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause–effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse‐maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress‐inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation.  相似文献   

13.
14.
15.
Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.  相似文献   

16.
17.
Cao Y  Dai Y  Cui S  Ma L 《The Plant cell》2008,20(10):2586-2602
Ubiquitination is one of many known histone modifications that regulate gene expression. Here, we examine the Arabidopsis thaliana homologs of the yeast E2 and E3 enzymes responsible for H2B monoubiquitination (H2Bub1). Arabidopsis has two E3 homologs (HISTONE MONOUBIQUITINATION1 [HUB1] and HUB2) and three E2 homologs (UBIQUITIN CARRIER PROTEIN [UBC1] to UBC3). hub1 and hub2 mutants show the loss of H2Bub1 and early flowering. By contrast, single ubc1, ubc2, or ubc3 mutants show no flowering defect; only ubc1 ubc2 double mutants, and not double mutants with ubc3, show early flowering and H2Bub1 defects. This suggests that ubc1 and ubc2 are redundant, but ubc3 is not involved in flowering time regulation. Protein interaction analysis showed that HUB1 and HUB2 interact with each other and with UBC1 and UBC2, as well as self-associating. The expression of FLOWERING LOCUS C (FLC) and its homologs was repressed in hub1, hub2, and ubc1 ubc2 mutant plants. Association of H2Bub1 with the chromatin of FLC clade genes depended on UBC1,2 and HUB1,2, as did the dynamics of methylated histones H3K4me3 and H3K36me2. The monoubiquitination of H2B via UBC1,2 and HUB1,2 represents a novel form of histone modification that is involved in flowering time regulation.  相似文献   

18.
19.
20.
In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild‐type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na+ accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na+/H+ exchange activity and Na+ efflux in transgenic plants were significantly higher than those in the wild‐type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt‐tolerant trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号