首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
During the immediate response to an inhaled allergen, there is an increase in the paracellular permeability of the airway epithelium.1 Histamine is an important agonist released during the immediate response to inhaled allergen. We hypothesized that histamine would increase human airway epithelial paracellular permeability and that it would do this by interrupting E-cadherin-based cell adhesion. Histamine, applied to the basolateral surface, increased the paracellular permeability of cultured human airway epithelia, and this effect of histamine was blocked by the histamine receptor antagonist promethazine. ECV304 cells express a histamine receptor, N-cadherin, and elements of the tight junction, including claudins, but they do not express E-cadherin. Histamine increased the paracellular permeability of ECV304 cells transfected with a vector and expressing E-cadherin but not ECV304 cells expressing lac-Z in the same vector. L cells do not express the histamine receptor, cadherins, or claudins. Histamine decreased adhesion of L cells expressing the human histamine receptor and E-cadherin to an E-cadherin-Fc fusion protein. Histamine did not alter the adhesion to the E-cadherin fusion protein of L cells expressing either the histamine receptor or E-cadherin alone. When applied to the apical surface, adenovirus poorly infects airway epithelial cells because its receptor, CAR, is restricted to the basolateral surface of the cells. When histamine was applied to the basolateral surface of airway epithelial cells, infection of the cells by adenovirus increased by approximately one log. This effect of histamine was also blocked by promethazine. Histamine increases airway paracellular permeability and increases susceptibility of airway epithelial cells to infection by adenovirus by interrupting E-cadherin adhesion.  相似文献   

2.
Numb is highly expressed throughout the crypt-villus axis of intestinal mucosa and functions as cell fate determinant and integrator of cell-to-cell adhesion. Increased paracellular permeability of intestinal epithelial cells is associated with the epithelial barrier dysfunction of inflammatory bowel diseases (IBDs). The apical junctional complex (AJC) assembly and myosin light chain (MLC) phosphorylation regulate adherens junctions (AJ) and tight junctions (TJ). We determined whether and how Numb modulate the paracellular permeability of intestinal epithelial cells. Caco-2 intestinal epithelial cells and their Numb-interfered counterparts were used in the study for physiological, morphological and biological analyses. Numb, expressed in intestinal epithelial cells and located at the plasma membrane of Caco-2 cells in a basolateral to apical distribution, increased in the intestinal epithelial cells with the formation of the intestinal epithelial barrier. Numb expression decreased and accumulated in the cytoplasm of intestinal epithelial cells in a DSS-induced colitis mouse model. Numb co-localized with E-cadherin, ZO-1 and Par3 at the plasma membrane and interacted with E-cadherin and Par3. Knockdown of Numb in Caco-2 cells altered the F-actin structure during the Ca2+ switch assay, enhanced TNFα-/INF-γ-induced intestinal epithelial barrier dysfunction and TJ destruction, and increased the Claudin-2 protein level. Immunofluorescence experiments revealed that NMIIA and F-actin co-localized at the cell surface of Caco-2 cells. Numb knockdown in Caco-2 cells increased F-actin contraction and the abundance of phosphorylated MLC. Numb modulated the intestinal epithelial barrier in a Notch signaling-independent manner. These findings suggest that Numb modulates the paracellular permeability by affecting AJC assembly and MLC phosphorylation.  相似文献   

3.

Background  

Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion.  相似文献   

4.
Rho family GTPases are important regulators of epithelial tight junctions (TJs); however, little is known about how the GTPases themselves are controlled during TJ assembly and function. We have identified and cloned a canine guanine nucleotide exchange factor (GEF) of the Dbl family of proto-oncogenes that activates Rho and associates with TJs. Based on sequence similarity searches and immunological and functional data, this protein is the canine homologue of human GEF-H1 and mouse Lfc, two previously identified Rho-specific exchange factors known to associate with microtubules in nonpolarized cells. In agreement with these observations, immunofluorescence of proliferating MDCK cells revealed that the endogenous canine GEF-H1/Lfc associates with mitotic spindles. Functional analysis based on overexpression and RNA interference in polarized MDCK cells revealed that this exchange factor for Rho regulates paracellular permeability of small hydrophilic tracers. Although overexpression resulted in increased size-selective paracellular permeability, such cell lines exhibited a normal overall morphology and formed fully assembled TJs as determined by measuring transepithelial resistance and by immunofluorescence and freeze-fracture analysis. These data indicate that GEF-H1/Lfc is a component of TJs and functions in the regulation of epithelial permeability.  相似文献   

5.
An abnormal increase in intestinal paracellular permeability may be an important pathogenic factor in various intestinal diseases. The intracellular factors and processes that regulate and cause alteration of intestinal paracellular permeability are not well understood. The purpose of this study was to examine some of the intracellular processes involved in cytoskeletal regulation of intestinal epithelial paracellular permeability using the filter-grown Caco-2 intestinal epithelial monolayers. Cytochalasin-b and colchicine were used to disrupt the cytoskeletal elements, actin microfilaments, and microtubules. Cytochalasin-b (5 m?g/ml) and colchicine (2 × 10?5M) at the doses used caused marked depolymerization and disruption of actin microfilaments and microtubules, respectively. Cytochalasin-b-induced disruption of actin microfilaments resulted in perturbation of tight junctions and desmosomes and an increase in Caco-2 monolayer paracellular permeability. The cytochalasin-b-induced disruption of actin microfilaments and subsequent changes in intercellular junctional complexes and paracellular permeability were not affected by inhibitors of protein synthesis (actinomycin-D or cycloheximide) or microtubule function (colchicine), but were inhibited by metabolic energy inhibitors (2,4-dinitrophenol or sodium azide). The cytochalasin-b-induced disturbance in Caco-2 actin microfilaments and intercellular junctional complexes and increase in paracellular permeability were rapidly reversed. The paracellular pathway “re-tightening” following cytochalasin-b removal was not affected by actinomycin-D, cycloheximide, or colchicine, but was inhibited by 2,4-dinitrophenol and sodium azide. The colchicine-induced disruption of microtubules did not have significant effect on actin microfilaments, intercellular junctions, or paracellular permeability. These findings suggest that cytochalasin-b-induced increase in Caco-2 monolayer paracellular permeability was due to actin microfilament mediated perturbation of intercellular junctional complexes. The re-tightening of paracellular pathways (following removal of cytochalasin-b) resulted from energy-mediated re-assembly of pre-existing actin microfilaments and intercellular junctional complexes. This re-closure process did not require protein synthesis or microtubule-mediated shuttling process. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The mammalian exocrine pancreas secretes a near-isosmotic fluid over a wide osmolarity range. The role of aquaporin (AQP) water channels in this process is now becoming clearer. AQP8 water channels, which were initially cloned from rat pancreas, are expressed at the apical membrane of pancreatic acinar cells and contribute to their osmotic permeability. However, the acinar cells secrete relatively little fluid and there is no obvious defect in pancreatic function in AQP8 knockout mice. Most of the fluid secreted by the pancreas is generated by ductal epithelial cells, which comprise only a small fraction of the gland mass. In the human pancreas, secretion occurs mainly in the intercalated ducts, where the epithelial cells express abundant AQP1 and AQP5 at the apical membrane and AQP1 alone at the basolateral membrane. In the rat and mouse, fluid secretion occurs mainly in the interlobular ducts where AQP1 and AQP5 are again co-localized at the apical membrane but appear to be expressed at relatively low levels. Nonetheless, the transepithelial osmotic permeability of rat interlobular ducts is sufficient to support near-isosmotic fluid secretion at observed rates. Furthermore, apical, but not basolateral, application of Hg2+ significantly reduces the transepithelial osmotic permeability, suggesting that apical AQP1 and AQP5 may contribute significantly to fluid secretion. The apparently normal fluid output of the pancreas in AQP1 knockout mice may reflect the presence of AQP5 at the apical membrane.  相似文献   

7.
Fluid transport across epithelial and endothelial barriers occurs in the neonatal and adult lungs. Biophysical measurements in the intact lung and cell isolates have indicated that osmotic water permeability is exceptionally high across alveolar epithelia and endothelia and moderately high across airway epithelia. This review is focused on the role of membrane water-transporting proteins, the aquaporins (AQPs), in high lung water permeability and lung physiology. The lung expresses several AQPs: AQP1 in microvascular endothelia, AQP3 in large airways, AQP4 in large- and small-airway epithelia, and AQP5 in type I alveolar epithelial cells. Lung phenotype analysis of transgenic mice lacking each of these AQPs has been informative. Osmotically driven water permeability between the air space and capillary compartments is reduced approximately 10-fold by deletion of AQP1 or AQP5 and reduced even more by deletion of AQP1 and AQP4 or AQP1 and AQP5 together. AQP1 deletion greatly reduces osmotically driven water transport across alveolar capillaries but has only a minor effect on hydrostatic lung filtration, which primarily involves paracellular water movement. However, despite the major role of AQPs in lung osmotic water permeabilities, AQP deletion has little or no effect on physiologically important lung functions, such as alveolar fluid clearance in adult and neonatal lung, and edema accumulation after lung injury. Although AQPs play a major role in renal and central nervous system physiology, the data to date on AQP knockout mice do not support an important role of high lung water permeabilities or AQPs in lung physiology. However, there remain unresolved questions about possible non-water-transporting roles of AQPs and about the role of AQPs in airway physiology, pleural fluid dynamics, and edema after lung infection.  相似文献   

8.
To determine whether microtubules are linked to intracellular transport in absorptive cells of the proximal intestine, quantitative ultrastructural studies were carried out in which microtubule distribution and content were determined in cells from fasting and fed animals. Rats were given a 1-h meal of standard chow, and tissue was taken from the mid-jejunum before, 1/2 h, and 6 h after the meal. The microtubule content of apical, Golgi, and basal regions of cells was quantitated by point-counting stereology. The results show) that microtubules are localized in intracellular regions of enterocytes (apical and Golgi areas) previously shown to be associated with lipid transport, and that the microtubule content within apical and Golgi regions is significantly (P less than 0.01) reduced during transport of foodstuffs. To determine the effect of inhibition of microtubule assembly on transport, colchicine or vinblastine sulfate was administered to postabsorptive rats, and the lipid and microtubule content of enterocytes determined 1 and 3 h later. After treatment with these agents, lipid was found to accumulate in apical regions of the cells; this event was associated with a significant reduction in microtubule content. In conclusion, the regional distribution of microtubules in enterocytes, the decrease in assembled microtubules after a fat-containing meal, and the accumulation of lipid after the administration of antimicrotubule agents suggest that microtubules are related to lipid transport in enterocytes.  相似文献   

9.
Intrinsic microtubule stability in interphase cells   总被引:13,自引:4,他引:9       下载免费PDF全文
Interphase microtubule arrays are dynamic in intact cells under normal conditions and for this reason they are currently assumed to be composed of polymers that are intrinsically labile, with dynamics that correspond to the behavior of microtubules assembled in vitro from purified tubulin preparations. Here, we propose that this apparent lability is due to the activity of regulatory effectors that modify otherwise stable polymers in the living cell. We demonstrate that there is an intrinsic stability in the microtubule network in a variety of fibroblast and epithelial cells. In the absence of regulatory factors, fibroblast cell interphase microtubules are for the most part resistant to cold temperature exposure, to dilution-induced disassembly and to nocodazole-induced disassembly. In epithelial cells, microtubules are cold-labile, but otherwise similar in behavior to polymers observed in fibroblast cells. Factors that regulate stability of microtubules appear to include Ca2+ and the p34cdc2 protein kinase. Indeed, this kinase induced complete destabilization of microtubules when applied to lysed cells, while a variety of other protein kinases were ineffective. This suggests that p34cdc2, or a kinase of similar specificity, may phosphorylate and inactivate microtubule-associated proteins, thereby conferring lability to otherwise length-wise stabilized microtubules.  相似文献   

10.
We describe preliminary results from two studies exploring the dynamics of microtubule assembly and organization within chromosomal spindle fibers. In the first study, we microinjected fluorescently labeled tubulin into mitotic PtK1 cells and measured fluorescence redistribution after photobleaching (FRAP) to determine the assembly dynamics of the microtubules within the chromosomal fibers in metaphase cells depleted of nonkinetochore microtubules by cooling to 23-24 degrees C. FRAP measurements showed that the tubulin throughout at least 72% of the microtubules within the chromosomal fibers exchanges with the cellular tubulin pool with a half-time of 77 sec. There was no observable poleward flux of subunits. If the assembly of the kinetochore microtubules is governed by dynamic instability, our results indicate that the half-life of microtubule attachment to the kinetochore is less than several min at 23-24 degrees C. In the second study, we used high-resolution polarization microscopy to observe microtubule dynamics during mitosis in newt lung epithelial cells. We obtained evidence from 150-nm-thick optical sections that microtubules throughout the spindle laterally associate for several sec into "rods" composed of a few microtubules. These transient lateral associations between microtubules appeared to produce the clustering of nonkinetochore and kinetochore microtubules into the chromosomal fibers. Our results indicate that the chromosomal fiber is a dynamic structure, because microtubule assembly is transient, lateral interactions between microtubules are transient, and the attachment of the kinetochores to microtubules may also be transient.  相似文献   

11.
12.
Previous studies found that monolayers formed from canine oxyntic epithelial cells in primary culture displayed remarkable resistance to apical acidification and both mitogenic and migratory responses to epidermal growth factor (EGF) treatment. In our present studies, we found that EGF increased transepithelial resistance (TER) but not short-circuit current in these monolayers. Parallel effects of EGF on decreasing mannitol flux and increasing TER implicate direct regulation of paracellular permeability. EGF acting at either apical and basolateral receptors rapidly increased TER, but the apical response was sustained whereas the basolateral response was transient. (125)I-labeled EGF binding revealed specific apical binding, but receptor numbers were 25-fold lower than on the basolateral surface. Both apical and basolateral EGF activated tyrosine phosphorylation of EGF receptors (EGFR), beta-catenin, and cellular substrate as evident on confocal microscopy. Although apical EGF activated a lesser degree of receptor autophosphorylation than basolateral EGF, phosphorylation of beta-catenin was equally prominent with apical and basolateral receptor activation. Together, these findings indicate that functional apical and basolateral EGFR exist on primary canine gastric epithelial cells and that these receptors regulate paracellular permeability. The sustained effect of apical EGFR activation and prominent phosphorylation of beta-catenin suggest that apical EGFR may play a key role in this regulation.  相似文献   

13.
The formation of a functional bipolar mitotic spindle is essential for genetic integrity. In human cells, the microtubule polymerase XMAP215/ch-Tog ensures spindle bipolarity by counteracting the activity of the microtubule-depolymerizing kinesin XKCM1/MCAK. Their antagonistic effects on microtubule polymerization confer dynamic instability on microtubules assembled in cell-free systems. It is, however, unclear if a similar interplay governs microtubule behavior in mammalian cells in vivo. Using real-time analysis of spindle assembly, we found that ch-Tog is required to produce or maintain long centrosomal microtubules after nuclear-envelope breakdown. In the absence of ch-Tog, microtubule assembly at centrosomes was impaired and microtubules were nondynamic. Interkinetochore distances and the lengths of kinetochore fibers were also reduced in these cells. Codepleting MCAK with ch-Tog improved kinetochore fiber length and interkinetochore separation but, surprisingly, did not rescue centrosomal microtubule assembly and microtubule dynamics. Our data therefore suggest that ch-Tog has at least two distinct roles in spindle formation. First, it protects kinetochore microtubules from depolymerization by MCAK. Second, ch-Tog plays an essential role in centrosomal microtubule assembly, a function independent of MCAK activity. Thus, the notion that the antagonistic activities of MCAK and ch-Tog determine overall microtubule stability is too simplistic to apply to human cells.  相似文献   

14.
The Golgi assembly pattern varies among cell types. In fibroblast cells, the Golgi apparatus concentrates around the centrosome that radiates microtubules; whereas in epithelial cells, whose microtubules are mainly noncentrosomal, the Golgi apparatus accumulates around the nucleus independently of centrosome. Little is known about the mechanisms behind such cell type-specific Golgi and microtubule organization. Here, we show that the microtubule minus-end binding protein Nezha/CAMSAP3 (calmodulin-regulated spectrin-associated protein 3) plays a role in translocation of Golgi vesicles in epithelial cells. This function of CAMSAP3 is supported by CG-NAP (centrosome and Golgi localized PKN-associated protein) through their binding. Depletion of either one of these proteins similarly induces fragmentation of Golgi membranes. Furthermore, we find that stathmin-dependent microtubule dynamics is graded along the radial axis of cells with highest activity at the perinuclear region, and inhibition of this gradient disrupts perinuclear distribution of the Golgi apparatus. We propose that the assembly of the Golgi apparatus in epithelial cells is induced by a multi-step process, which includes CAMSAP3-dependent Golgi vesicle clustering and graded microtubule dynamics.  相似文献   

15.
Dynamic microtubules are necessary for proper mitotic spindle assembly and chromosome segregation during mitosis. Members of the kinesin superfamily of molecular motor proteins are important to spindle function. Of particular interest is the Kinesin-13 family member MCAK, which acts to regulate microtubule dynamics during spindle assembly and to ensure proper attachments of chromosomes to spindle microtubules. The unique ability of MCAK to regulate microtubule dynamics makes it a potential target for development of new drugs that alter spindle function. Here, we knocked down MCAK via RNAi in normal and malignant cell lines and found that the two tested malignant cell lines were acutely sensitive to MCAK knockdown, while the tested normal cells were less sensitive. In addition, we looked at the effect of combining MCAK knockdown and drug treatment with paclitaxel or vinblastine to identify spindle assembly defects. We found that MCAK knockdown increased the morphological defects of the microtubule cytoskeleton in HeLa cells caused by anti-microtubule drugs. Our studies support the idea that MCAK would be a good target for new chemotherapeutic development and may be particular useful in combination therapies with currently available anti-microtubule agents.  相似文献   

16.
In this synopsis of a symposium at EB2007, we start with an overview of noise and impedance analyses that have been applied to various epithelial barriers. Noise analysis yields specific information about ion channels and their regulation in epithelial and endothelial barriers. Impedance analysis can yield information about apical and basolateral membrane conductances and paracellular conductance of both epithelial and endothelial barriers. Using a morphologically based model, impedance analysis has been used to assess changes in apical and basolateral membrane surface areas and dimensions of the lateral intercellular space. Impedance analysis of an in vitro airway epithelial barrier under normal, nucleotide-stimulated, and cigarette smoke-exposed conditions yielded information on how activation and inhibition of secretion occur in airway epithelial cells. Similarly, impedance analysis of primary rat alveolar epithelial cell monolayer model under control and EGTA exposure conditions indicate that EGTA causes decreases in resistances of tight junctional routes as well as apical and basolateral cell membranes without causing much change in cell capacitances. In a stretch-caused injury model of alveolar epithelium, transcellular ion transport function and paracellular permeability of solute transport appear to be differentially regulated. Finally, inhibition of caveolae-mediated transcytosis in lung endothelium led to disruption of paracellular routes, increasing the physical dimension and permeability of tight junctional region. These data together demonstrate the cross talk between transcellular and paracellular transport (function and routes) of lung epithelial and endothelial barriers. Mechanistic (e.g., signaling cascades) information on such cross talk remain to be determined.  相似文献   

17.
Aquaporin-5 (AQP5) is present on the apical membrane of epithelial cells in various secretory glands as well as on the apical membrane of the airway epithelium, airway submucosal glands, and type 1 pneumocytes, where it can participate in respiratory tract water homeostasis. We examined the effects of cAMP on AQP5 distribution and abundance. When AQP5-expressing mouse lung epithelial cells were treated with cAMP or the beta-adrenergic agonist terbutaline, a biphasic AQP5 response was observed. Short term (minutes) exposure to cAMP produced internalization of AQP5 off of the membrane and a decrease in protein abundance. Both of these responses were blocked by inhibition of protein kinase A and the decrease in abundance was blocked by chloroquine, indicating lysosome-mediated degradation. Sustained cAMP exposure (hours) produced an increase in membrane localization and increased abundance; these effects were also blocked by protein kinase A inhibition. The beta-adrenergic agonist terbutaline produced changes in AQP5 abundance in mouse trachea and lung, consistent with our findings in cultured epithelial cells. Purified AQP5 protein was phosphorylated by protein kinase A but not protein kinase C or casein kinase II, and aquaporin-5 was phosphorylated in cultured cells after long term (but not short term) exposure to cAMP. These studies indicate that cAMP and beta-adrenergic agonists produce distinct short and long term effects on AQP5 distribution and abundance that may contribute to regulation of lung water homeostasis.  相似文献   

18.
Aquaporin 2 is a collecting duct water channel that is located in apical vesicles and in the apical plasma membrane of collecting duct principal cells. It shares 42% identity with the proximal tubule/thin descending limb water channel, CHIP28. The present study was aimed at addressing three questions concerning the location and behavior of the AQP2 protein under different conditions. First, does the AQP2 channel relocate to the apical membrane after vasopressin treatment? Our results show that AQP2 is diffusely distributed in cytoplasmic vesicles in collecting duct principal cells of homozygous Brattleboro rats that lack vasopressin. In rats injected with exogenous vasopressin, however, AQP2 became concentrated in the apical plasma membrane of principal cells, as determined by immunofluorescence and immunogold electron microscopy. This behavior is consistent with the idea that AQP2 is the vasopressin-sensitive water channel. Second, is the cellular location of AQP2 modified by microtubule disruption? In normal rats, AQP2 has a mainly apical and subapical location in principal cells, but in colchicine-treated rats, it is distributed on vesicles that are scattered throughout the entire cytoplasm. This is consistent with the dependence on microtubules of apical protein targeting in many cell types, and explains the inhibitory effect of microtubule disruption on the hydroosmotic response to vasopressin in sensitive epithelia, including the collecting duct. Third, is AQP2 present in neonatal rat kidneys? We show that AQP2 is abundant in principal cells from neonatal rats at all days after birth. The detection of AQP2 in early neonatal kidneys indicates that a lack of this protein is not responsible for the relatively weak urinary concentrating response to vasopressin seen in neonatal rats.  相似文献   

19.
The familial cylindromatosis tumor suppressor CYLD is known to contain three cytoskeleton-associated protein glycine-rich (CAP-Gly) domains, which exist in a number of microtubule-binding proteins and are responsible for their association with microtubules. However, it remains elusive whether CYLD interacts with microtubules and, if so, whether the interaction is mediated by the CAP-Gly domains. In this study, our data demonstrate that CYLD associates with microtubules both in cells and in vitro, and the first CAP-Gly domain of CYLD is mainly responsible for the interaction. Knockdown of cellular CYLD expression dramatically delays microtubule regrowth after nocodazole washout, indicating an activity for CYLD in promoting microtubule assembly. Our data further demonstrate that CYLD enhances tubulin polymerization into microtubules by lowering the critical concentration for microtubule assembly. In addition, we have identified by wound healing assay a critical role for CYLD in mediating cell migration and found that its first CAP-Gly domain is required for this activity. Thus CYLD joins a growing list of CAP-Gly domain-containing proteins that regulate microtubule dynamics and function.  相似文献   

20.
In this study, we examined the contribution of microtubules to epithelial morphogenesis in primary thyroid cell cultures. Thyroid follicles consist of a single layer of polarized epithelial cells surrounding a closed compartment, the follicular lumen. Freshly isolated porcine thyroid cells aggregate and reorganize to form follicles when grown in primary cultures. Follicular reorganization is principally a morphogenetic process that entails the assembly of biochemically distinct apical and basolateral membrane domains, delimited by tight junctions. The establishment of cell surface polarity during folliculogenesis coincided with the polarized redistribution of microtubules, predominantly in the developing apical poles of cells. Disruption of microtubule integrity using either colchicine or nocodazole caused loss of defined apical membrane domains, tight junctions and follicular lumina. Apical membrane and tight junction markers became randomly distributed at the outer surfaces of aggregates. In contrast, the basolateral surface markers, E-cadherin and Na(+),K(+)-ATPase, remained correctly localized at sites of cell-cell contact and at the free surfaces of cell aggregates. These findings demonstrate that microtubules play a necessary role in thyroid epithelial morphogenesis. Specifically, microtubules are essential to preserve the correct localization of apical membrane components within enclosed cellular aggregates, a situation that is also likely to pertain where lumina must be formed from solid aggregates of epithelial precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号