首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Rainbow Trout (Oncorhynchus mykiss [Walbaum]) is commonly stocked as a sport fish throughout the world but can have serious negative effects on native species, especially in headwater systems. Productive fish‐bearing lakes represent a frequently stocked yet infrequently studied system, and effects of trout in these systems may differ from those in headwater lakes. 2. We used a Before‐After Control‐Impact (BACI) design to determine how stocked trout affected assemblage‐level and taxon‐level biomass, abundance and average length of littoral invertebrates in a stocked lake relative to three unstocked control lakes in the boreal foothills of Alberta, Canada. Lakes were studied 1 year before and for 2 years after stocking. Because characteristics of productive fish‐bearing lakes should buffer impacts of introduced fish, we predicted that trout would not affect assemblage‐level structure of littoral invertebrates but might reduce the abundance or average length of large‐bodied taxa frequently consumed by trout. 3. Relative to the unstocked control lakes, biomass, but not abundance, of the littoral invertebrate assemblage was affected indirectly by trout through increases of some taxa after trout stocking. At the individual taxon‐level, trout stocking did not affect most (23 of the 27) taxa, with four taxa increasing in abundance or biomass after stocking. Only one taxon, Chironomidae, showed evidence of size‐selective predation by trout, being consumed frequently by trout and decreasing significantly in average length after stocking. 4. Our results contrast with the strong negative effects of trout stocking on invertebrate assemblages commonly reported from headwater lakes. A combination of factors, including large and robust native populations of forage fish, the generalised diet of trout, overwinter aeration, relatively high productivity and dense macrophyte beds, likely works in concert to reduce potentially negative effects of stocked trout in these systems. As such, productive, fish‐bearing lakes may represent a suitable system for trout stocking, especially where native sport fish populations are lacking.  相似文献   

2.
The influence of habitat on interactions between a fish predator (brown trout Salmo trutta) and a benthic invertebrate community was studied in nine field enclosures (8 ×3 m) in a creek in southern Sweden. Three habitat treatments were tested, a shallow sandy habitat, a deep habitat containing a mixture of large and small cobbles and a moderately deep habitat with large cobbles. The one month-long experiment showed that there were no major differences in the abundance and biomass of the benthic macroinvertebrate fauna among these habitats as no functional groups of invertebrates and only a few taxa differed between treatments. Invertebrate drift rates decreased over time, which was probably related to seasonal changes in invertebrate life cycles or to effects of predation independent of habitat type, as there was no difference between treatments.  相似文献   

3.
1. Non‐native trout have been stocked in streams and lakes worldwide largely without knowledge of the consequences for native ecosystems. Although trout have been introduced widely throughout the Sierra Nevada of California, U.S.A., fishless streams and their communities of native invertebrates persist in some high elevation areas, providing an opportunity to study the effects of trout introductions on natural fishless stream communities. 2. We compared algal biomass and cover, organic matter levels and invertebrate assemblages in 21 natural fishless headwater streams with 21 paired nearby streams containing stocked trout in Yosemite National Park. 3. Although environmental conditions and particulate organic matter levels did not differ between the fishless and trout streams, algal biomass (as chlorophyll a concentration) and macroalgal cover were, on average, approximately two times and five times higher, respectively, in streams containing trout. 4. There were no differences in the overall densities of invertebrates in fishless versus paired trout streams; however, invertebrate richness (after rarefaction), evenness, and Simpson and Shannon diversities were 10–20% higher in fishless than in trout streams. 5. The densities of invertebrates belonging to the scraper‐algivore and predator functional feeding guilds were higher, and those for the collector‐gatherer guild lower, in fishless than trout streams, but there was considerable variation in the effects of trout on specific taxa within functional feeding groups. 6. We found that the densities of 10 of 50 common native invertebrate taxa (found in more than half of the stream pairs) were reduced in trout compared to fishless streams. A similar number of rarer taxa also were absent or less abundant in the presence of trout. Many of the taxa that declined with trout were conspicuous forms (by size and behaviour) whose native habitats are primarily high elevation montane streams above the original range of trout. 7. Only a few taxa increased in the presence of trout, possibly benefiting from reductions in their competitors and predators by trout predation. 8. These field studies provide catchment‐scale evidence showing the selective influence of introduced trout on stream invertebrate and algal communities. Removal of trout from targeted headwater streams may promote the recovery of native taxa, community structure and trophic organisation.  相似文献   

4.
1. The composition and spatiotemporal dynamics of biological communities are influenced by biotic processes, such as predation and competition, but also by physical disturbances, such as floods in running waters. However, the interplay of disturbance with predation is still poorly understood, especially in frequently disturbed streams. Further, different predator species can affect prey communities in different ways depending on their feeding mode and efficiency. 2. We investigated the individual and combined effects of flood‐induced bed disturbance and fish predation on the benthos for 4 weeks in 18 streamside channels fed by a flood‐prone New Zealand river. Bed movements caused by floods were simulated by tumbling the substratum in half the channels. Six channels each were stocked with introduced brown trout (Salmo trutta) or native upland bully (Gobiomorphus breviceps) or had fish excluded. We studied algal biomass and both invertebrate density and daytime activity on surface stones on several dates after the disturbance, invertebrate community composition in the substrata of the entire channels on day 28 and leaf decomposition rates over the 28‐day period. 3. Disturbance affected algal biomass and density, richness and activity of surface stone invertebrates, and overall density and richness of channel invertebrates. Presence or absence of fish, by contrast, did not influence overall invertebrate standing stocks when subsurface substrata were included but did affect invertebrate densities on surface stones in 45% of all analysed cases and invertebrate activity on surface stones in all cases. Leaf decomposition rates were not influenced at all by the experimental manipulations. 4. Native upland bullies featured more often than exotic brown trout in causing invertebrate density changes and equally often in causing changes to grazer behaviour. Overall, our results imply that fish predation can have strong effects on the benthic invertebrate community in frequently disturbed streams, especially via behavioural changes.  相似文献   

5.
The introduction of nonnative salmonids in the Southern Hemisphere generally leads to a reduction in invertebrate abundance and changes in assemblage composition. In the Cape Floristic Region of South Africa, introduced rainbow trout Oncorhynchus mykiss is the dominant predator in many headwater streams, where they have replaced small‐bodied native fishes such as Breede River redfin Pseudobarbus burchelli. To examine the consequences of this species replacement on food web structure, we used a month‐long field experiment to compare the top‐down effects of Breede River redfin and rainbow trout on benthic invertebrate assemblages (abundance and composition) and basal resources (periphyton and particulate organic matter) in 1 × 1.5 m of plastic cages. Benthic invertebrate abundance was more strongly depleted in the cages with redfin than in the cages with trout, and redfin and trout had distinct effects on invertebrate assemblage composition. On the other hand, neither redfin nor trout had a significant influence over standing stocks of periphyton or organic matter, implying that their differential effects on benthic invertebrates did not cascade down to the base of the stream food web in our experiment. Gut content analysis showed that aquatic invertebrates contributed more to the diet of redfin, while terrestrial invertebrates contributed more to the diet of trout, which may be responsible for the relatively weak effect of trout on aquatic invertebrates. This pattern contrasts with nonnative salmonid impacts elsewhere in the Southern Hemisphere. That trout can strongly alter the structure of benthic invertebrate assemblages, in addition to severely depleting native fish abundance, in Cape Floristic Region headwater streams should be weighed into management decisions, and our findings highlight the need for a detailed understanding of species‐specific top‐down effects where native predators are replaced by invasive predators.  相似文献   

6.
Rosenfeld  Jordan S. 《Hydrobiologia》1997,344(1-3):75-79
Studies of benthic invertebrates in lakes and streams suggest thatlarge-bodied herbivores are more efficient grazers than smallerones. In order to assess the effect of larger herbivores on smallergrazing invertebrates, the presence of dominant grazer taxa wasmanipulated in streamside troughs in a first order temperaterainforest stream in British Columbia. The presence of mayflies(Ameletus sp.) and tailed frog tadpoles (Ascaphustruei) reduced both algal biomass and the abundance of herbivorouschironomids (Orthocladiinae) on ceramic tiles. This confirms thatlarge mobile grazers in streams have a negative effect on smallersessile invertebrate grazers either through resource competition ordirect consumption (predation).  相似文献   

7.
Nyström P  McIntosh AR 《Oecologia》2003,136(2):279-288
Predatory species have been introduced to habitats spanning a wide range of environmental conditions. To better understand the consequences of predation in natural communities we need to examine how variations in abiotic factors modify the influence of predation. The effects of introduced predators may vary amongst habitats if natural disturbance affects the abundance and taxonomic composition of consumers and their resources, or the predator alters recolonisation after disturbance. We tested whether a bed-moving disturbance altered subsequent interactions involving native and introduced predatory fish, invertebrate grazers and algae in experimental channels within a New Zealand stream. Disturbance reduced the abundance of invertebrates by 84%, and induced mortality of Conoesucidae caddisflies. However, the relative abundance of taxa changed little immediately following the disturbance. Invertebrate communities recovered following disturbance in fishless channels and those with native galaxiids (Galaxias vulgaris), and were almost indistinguishable from undisturbed fishless controls after 2 weeks. Invertebrate abundance declined and algal abundance increased in channels with exotic brown trout (Salmo trutta) and their effect was strongest in previously disturbed channels. However, predators and disturbance only had interactive effects on grazer emigration rates. Trout affected grazers through direct consumption (e.g. Conoesucidae caddisflies), and induced higher emigration rates of grazers from channels via drift (e.g. the mayfly Deleatidium). The effects of predatory trout and galaxiids combined differed in disturbed and stable channels. The observed combined effects of predatory trout and galaxiids on invertebrate grazers were lower than expected in stable channels partly due to low emigration rates of Conoesucidae, whereas emigration of grazers was higher than expected in the disturbed channels. The biomass of algae was higher than expected in disturbed channels with both predators. Collectively, our results indicate that predator substitutability and the non-lethal effects of introduced predators varied depending on disturbance history, but their effects on the biomass of grazers and algae did not.  相似文献   

8.
This study examined how variability in the abundance and biomass structure of benthic invertebrates affected the feeding choice of the whitefish Coregonus lavaretus on a hard bottom habitat of the brackish Baltic Sea. In general, crustaceans such as Idotea balthica and Gammarus spp. were preferred over molluscs. Although being the most numerous taxon in the invertebrate samples, Mytilus trossulus was the lowest ranking in C. lavaretus food preference. The availability of benthic invertebrate prey set the dietary range of fish but the selectivity largely described fish feeding within this range. There was no clear link between fish predation and the dominance structure of benthic invertebrate communities, suggesting that species composition, abundance and biomass of invertebrate species had no impact on the feeding selectivity of the fish. Thus, while fish predation may not affect the dominant species within a benthic community, due to strong selectivity fish may impose strong pressure on some rarer but highly preferred invertebrate prey species.  相似文献   

9.
1. Structural complexity may stabilise predator–prey interactions and affect the outcome of trophic cascades by providing prey refuges. In deep lakes, vulnerable zooplankton move vertically to avoid fish predation. In contrast, submerged plants often provide a diel refuge against fish predation for large‐bodied zooplankton in shallow temperate lakes, with consequences for the whole ecosystem. 2. To test the extent to which macrophytes serve as refuges for zooplankton in temperate and subtropical lakes, we introduced artificial plant beds into the littoral area of five pairs of shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N). We used plants of different architecture (submerged and free‐floating) along a gradient of turbidity over which the lakes were paired. 3. We found remarkable differences in the structure (taxon‐richness at the genus level, composition and density) of the zooplankton communities in the littoral area between climate zones. Richer communities of larger‐bodied taxa (frequently including Daphnia spp.) occurred in the temperate lakes, whereas small‐bodied taxa characterised the subtropical lakes. More genera and a higher density of benthic/plant‐associated cladocerans also occurred in the temperate lakes. The density of all crustaceans, except calanoid copepods, was significantly higher in the temperate lakes (c. 5.5‐fold higher). 4. Fish and shrimps (genus Palaemonetes) seemed to exert a stronger predation pressure on zooplankton in the plant beds in the subtropical lakes, while the pelagic invertebrate Chaoborus sp. was slightly more abundant than in the temperate lakes. In contrast, plant‐associated predatory macroinvertebrates were eight times more abundant in the temperate than in the subtropical lakes. 5. The artificial submerged plants hosted significantly more cladocerans than the free‐floating plants, which were particularly avoided in the subtropical lakes. Patterns indicating diel horizontal migration were frequently observed for both overall zooplankton density and individual taxa in the temperate, but not the subtropical, lakes. In contrast, patterns of diel vertical migration prevailed for both the overall zooplankton and for most individual taxa in the subtropics, irrespective of water turbidity. 6. Higher fish predation probably shapes the general structure and dynamics of cladoceran communities in the subtropical lakes. Our results support the hypothesis that horizontal migration is less prevalent in the subtropics than in temperate lakes, and that no predator‐avoidance behaviour effectively counteracts predation pressure in the subtropics. Positive effects of aquatic plants on water transparency, via their acting as a refuge for zooplankton, may be generally weak or rare in warm lakes.  相似文献   

10.
11.
Brown trout and food web interactions in a Minnesota stream   总被引:1,自引:0,他引:1  
1. We examined indirect, community‐level interactions in a stream that contained non‐native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined‐species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non‐native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek.  相似文献   

12.
1. We studied the effect of mesh size (6 and 3 mm) on interactions between brown trout ( Salmo trutta ) and benthic invertebrates in enclosures placed in a stream in southern Sweden. We also compared how different prey exchange rates affected interactions between trout and invertebrates.
2. Trout had strong impacts on some benthic taxa, and different mesh sizes produced different patterns. Trout affected the abundance of 10 of the 21 taxa examined, six in enclosures with 3 mm mesh and six in enclosures with 6 mm mesh. The abundance of nine of the prey taxa was lower in the presence of trout, only leptocerids were more numerous in the presence of trout.
3. Our measurements of prey immigration/emigration, together with trout diet data, suggest that direct consumption by trout, rather than avoidance behaviour by prey, explains most decreases in prey abundance. There was avoidance behaviour by only two of the twenty-one prey taxa, with trout inducing emigration of the mayflies Baetis rhodani and Paraleptophlebia sp.
4. Trout indirectly increased periphyton biomass in both 3 and 6 mm enclosures. The effect of trout on periphyton was probably due to strong effects of trout on the grazer, Baetis rhodani , Heptagenia sp. and Paralepthoplebia sp.
5. Our results suggest that mesh size, through its effects on exchange rates of prey, may affect interactions between predators and prey in running waters, but that the effects of dispersal and predation on invertebrates are taxon specific.  相似文献   

13.
The benthic fauna was examined in a series of four isolated headwater lakes, displaying a pH gradient of 5.4–7.0. A slight reduction in number of taxa present occurred below pH 6, with the fauna below 3 m dominated by the Diptera. Although epibenthic gastropods were rare, in contrast with European studies, Amphipoda, Ephemeroptera and Pisidium were common in the least buffered lake, which experiences spring pH values as low as 4.7. There were little relation between the pH or alkalinity, and the abundance, and biomass of the fauna at depths greater than 3 m. However, biomass of the littoral fauna increased significantly in the lakes with lower pH, as a result of an increase in large littoral species normally susceptible to fish predation.  相似文献   

14.
Intensive forestry and other activities that alter riparian vegetation may disrupt the connectivity and the flux of energy between terrestrial and aquatic habitats and have large effects on biota, especially in small streams. We manipulated the amount of in-stream wood and the flux of terrestrial invertebrate subsidies to determine how these factors affected potential food resources for drift-feeding brown trout (Salmo trutta ) in a boreal Swedish forest stream. Specifically, we followed the effects on the abundance of aquatic and terrestrial invertebrate fauna from June to August 2007. The treatments were 1) addition of wood, unmanipulated terrestrial invertebrate inputs, 2) reduction of terrestrial invertebrate inputs (using canopy covers), no addition of wood, 3) unmanipulated ambient conditions, 4) simultaneous addition of wood and reduction of terrestrial invertebrate inputs. Added wood resulted in greater biomass of aquatic invertebrate biomass, and both input and drift of terrestrial invertebrates were reduced by canopy covers. In terms of total potential prey biomass, the addition of wood with ambient levels of terrestrial invertebrate inputs had the highest standing crop of benthic, wood-living and terrestrial invertebrates combined, whereas the treatment with reduced terrestrial input and no wood added had the lowest standing crop. Our study indicates that forest practices that both reduce the recruitment of wood and the input of terrestrial invertebrates to small streams have negative effects on prey availability for drift-feeding brown trout. The positive effects of wood addition on biomass of aquatic macroinvertebrates may partly compensate for the negative effects of reduced terrestrial invertebrate subsidies.  相似文献   

15.
Jonas Dahl 《Oecologia》1998,117(1-2):217-226
I assessed the impact of both vertebrate and invertebrate predators on a lotic benthic community in a 1-month-long experiment, using enclosures containing cobble/gravel bottoms, with large-mesh netting that allowed invertebrates to drift freely. Brown trout (Salmo trutta) and leeches (Erpobdella octoculata) were used as predators and four treatments were tested: a predator-free control, leeches only, trout only, and leeches and trout together. A density of 26.7 leeches/m2 (20 leeches/enclosure) and 1.3 trout/m2 (one trout per enclosure) was stocked into the enclosures. The total biomass of invertebrate prey was significantly lower in the trout and trout plus leech treatments than in the leech and control treatments, which were due to strong negative effects of trout on Gammarus. On the individual prey taxon level, both trout and leeches affected the abundance of Asellus , Baetis and Ephemerella, whereas the abundance of Gammarus was only affected by trout, and the abundance of Orthocladiinae and Limnephilidae was only affected by leeches. In the treatment with trout and leeches together, the abundance of Ephemerella and Baetis was higher than when trout or leeches were alone, which was probably due to predator interactions. Leeches and trout had no effects on prey immigration but did affect per capita emigration rates. Both trout and leeches indirectly increased periphyton biomass in enclosures, probably due to their strong effects on grazers. Both trout and leeches were size-selective predators, with trout selecting large prey, and leeches selecting small prey. Size-selective predation by trout and leeches affected the size structure of five commonly consumed prey taxa. Trout produced prey populations of small sizes owing to consumption of large prey as well as increased emigration out of enclosures by these large prey. Leech predation produced prey assemblages of larger size owing to consumption and increased emigration of small prey. These results suggest that in lotic habits, predatory invertebrates can be as strong interactors as vertebrate predators. Received: 23 June 1997 / Accepted: 4 May 1998  相似文献   

16.
A large experimental channel was used to examine the responses of benthic invertebrate communities to artificial flushes. Two artificial flushes were done at a 20-day interval with a 2-fold difference in peak discharge and duration between them. The effects of the flushes on macroinvertebrates were monitored by comparing the abundance of individual taxa, taxon richness, diversity measures, and similarity indices. Taxon richness and abundances of invertebrates were drastically reduced by every flush. However, the diversity of invertebrates was not significantly reduced by the flushes, and the composition was similar before and after each flush. The fast recruitment of some taxa, having short life cycles, reduced the diversity of invertebrates in the interval between the two flushes. The flushes caused significant reductions in the abundance of epiphytes and fauna living in the streambed. The fauna more resistant to flushes were invertebrates that fasten their cases or retreats by silk threads to substrata. Taxa living in sediment under stones and having a sucking apparatus were also resistant to flushes. Handling editor: R. Bailey  相似文献   

17.
Human activities frequently result in either intentional or unintentional introductions of species to new locations, and freshwater environments worldwide are particularly vulnerable to species invasions. An introduced freshwater diatom, Didymosphenia geminata, was first discovered in New Zealand in 2004 but there was limited research available to predict the drivers of D. geminata biomass and how biomass variability might influence higher trophic levels (e.g. invertebrates and fish). We examined the effect of D. geminata biomass on benthic invertebrates, invertebrate drift and fish communities in 20 rivers in New Zealand with variable hydrology, physical habitat and water chemistry. Variation in D. geminata biomass was best explained by a model that showed D. geminata biomass increased with time since the last flow event exceeding three times the median annual discharge and decreasing concentration of dissolved reactive phosphorus. Analyses of biotic responses showed that high D. geminata biomass did not affect either invertebrate or fish diversity but altered the structure of benthic communities, changed the composition of drifting invertebrate communities and reduced fish biomass by 90 %, particularly trout. A partial least squares path model was used to disentangle both direct and indirect effects of D. geminata on fish communities and showed D. geminata had a significant negative direct effect on fish communities. This is the first study to show how the potential effects of the introduced diatom D. geminata can impact fish communities and has shown that D. geminata impacts fish both directly and indirectly through changes in their invertebrate prey community.  相似文献   

18.
Quantitative samples were used to investigate density, biomass and annual production of the benthic invertebrate fauna in a small Danish stream. Forty-eight taxa were found and the total invertebrate densities varied from 3 810 m?2 in July to 20 040 m?2 in December. The total mean annual biomass of the invertebrate fauna was 6.1 g ash-free dry wt m?2. The annual production of the invertebrates was estimated from their mean annual biomass and their annual P/B ratio. Production of the primary consumers (herbivores and detritivores) was 21.4 g ash-free dry wt m?2 y?1 and of secondary consumers (carnivores) 1.1 g m?2 y?1. The amount of invertebrate production available to the trout population and the importance of the species as food for trout are discussed.  相似文献   

19.
20.
1. We characterised aquatic and terrestrial invertebrate drift in six south‐western North Carolina streams and their implications for trout production. Streams of this region typically have low standing stock and production of trout because of low benthic productivity. However, little is known about the contribution of terrestrial invertebrates entering drift, the factors that affect these inputs (including season, diel period and riparian cover type), or the energetic contribution of drift to trout. 2. Eight sites were sampled in streams with four riparian cover types. Drift samples were collected at sunrise, midday and sunset; and in spring, early summer, late summer and autumn. The importance of drift for trout production was assessed using literature estimates of annual benthic production in the southern Appalachians, ecotrophic coefficients and food conversion efficiencies. 3. Abundance and biomass of terrestrial invertebrate inputs and drifting aquatic larvae were typically highest in spring and early summer. Aquatic larval abundances were greater than terrestrial invertebrates during these seasons and terrestrial invertebrate biomass was greater than aquatic larval biomass in the autumn. Drift rates of aquatic larval abundance and biomass were greatest at sunset. Inputs of terrestrial invertebrate biomass were greater than aquatic larvae at midday. Terrestrial invertebrate abundances were highest in streams with open canopies and streams adjacent to pasture with limited forest canopy. 4. We estimate the combination of benthic invertebrate production and terrestrial invertebrate inputs can support 3.3–18.2 g (wet weight) m−2 year−1 of trout, which is generally lower than values considered productive [10.0–30.0 g (wet weight) m−2 year−1]. 5. Our results indicate terrestrial invertebrates can be an important energy source for trout in these streams, but trout production is still low. Any management activities that attempt to increase trout production should assess trout food resources and ensure their availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号