首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
DNA methylation is a chemical modification of cytosine bases that is pivotal for gene regulation, cellular specification and cancer development. Here, we describe an R package, methylKit, that rapidly analyzes genome-wide cytosine epigenetic profiles from high-throughput methylation and hydroxymethylation sequencing experiments. methylKit includes functions for clustering, sample quality visualization, differential methylation analysis and annotation features, thus automating and simplifying many of the steps for discerning statistically significant bases or regions of DNA methylation. Finally, we demonstrate methylKit on breast cancer data, in which we find statistically significant regions of differential methylation and stratify tumor subtypes. methylKit is available at http://code.google.com/p/methylkit.  相似文献   

2.
Bisulfite sequencing (BS-seq) is the gold standard for studying genome-wide DNA methylation. We developed MOABS to increase the speed, accuracy, statistical power and biological relevance of BS-seq data analysis. MOABS detects differential methylation with 10-fold coverage at single-CpG resolution based on a Beta-Binomial hierarchical model and is capable of processing two billion reads in 24 CPU hours. Here, using simulated and real BS-seq data, we demonstrate that MOABS outperforms other leading algorithms, such as Fisher’s exact test and BSmooth. Furthermore, MOABS analysis can be easily extended to differential 5hmC analysis using RRBS and oxBS-seq. MOABS is available at http://code.google.com/p/moabs/.  相似文献   

3.
DNA methylation plays a central role in genomic regulation and disease. Sodium bisulfite treatment (SBT) causes unmethylated cytosines to be sequenced as thymine, which allows methylation levels to reflected in the number of ‘C’-‘C’ alignments covering reference cytosines. Di-base color reads produced by lifetech’s SOLiD sequencer provide unreliable results when translated to bases because single sequencing errors effect the downstream sequence. We describe FadE, an algorithm to accurately determine genome-wide methylation rates directly in color or nucleotide space. FadE uses SBT unmethylated and untreated data to determine background error rates and incorporate them into a model which uses Newton–Raphson optimization to estimate the methylation rate and provide a credible interval describing its distribution at every reference cytosine. We sequenced two slides of human fibroblast cell-line bisulfite-converted fragment library with the SOLiD sequencer to investigate genome-wide methylation levels. FadE reported widespread differences in methylation levels across CpG islands and a large number of differentially methylated regions adjacent to genes which compares favorably to the results of an investigation on the same cell-line using nucleotide-space reads at higher coverage levels, suggesting that FadE is an accurate method to estimate genome-wide methylation with color or nucleotide reads. http://code.google.com/p/fade/.  相似文献   

4.
Studies describing intricate patterns of DNA methylation in nematode and ciliate are controversial due to the uncertainty of genomic evolutionary conservation of DNA methylation enzymes.See related research articles http://genomebiology.com/2012/13/10/R99 and http://genomebiology.com/2012/13/10/R100  相似文献   

5.
We describe methclone, a novel method to identify epigenetic loci that harbor large changes in the clonality of their epialleles (epigenetic alleles). Methclone efficiently analyzes genome-wide DNA methylation sequencing data. We quantify the changes using a composition entropy difference calculation and also introduce a new measure of global clonality shift, loci with epiallele shift per million loci covered, which enables comparisons between different samples to gauge overall epiallelic dynamics. Finally, we demonstrate the utility of methclone in capturing functional epiallele shifts in leukemia patients from diagnosis to relapse. Methclone is open-source and freely available at https://code.google.com/p/methclone.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0472-5) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
With the rapid and steady increase of next generation sequencing data output, the mapping of short reads has become a major data analysis bottleneck. On a single computer, it can take several days to map the vast quantity of reads produced from a single Illumina HiSeq lane. In an attempt to ameliorate this bottleneck we present a new tool, DistMap - a modular, scalable and integrated workflow to map reads in the Hadoop distributed computing framework. DistMap is easy to use, currently supports nine different short read mapping tools and can be run on all Unix-based operating systems. It accepts reads in FASTQ format as input and provides mapped reads in a SAM/BAM format. DistMap supports both paired-end and single-end reads thereby allowing the mapping of read data produced by different sequencing platforms. DistMap is available from http://code.google.com/p/distmap/  相似文献   

8.
Both 454 and Ion Torrent sequencers are capable of producing large amounts of long high-quality sequencing reads. However, as both methods sequence homopolymers in one cycle, they both suffer from homopolymer uncertainty and incorporation asynchronization. In mapping, such sequencing errors could shift alignments around homopolymers and thus induce incorrect mismatches, which have become a critical barrier against the accurate detection of single nucleotide polymorphisms (SNPs). In this article, we propose a hidden Markov model (HMM) to statistically and explicitly formulate homopolymer sequencing errors by the overcall, undercall, insertion and deletion. We use a hierarchical model to describe the sequencing and base-calling processes, and we estimate parameters of the HMM from resequencing data by an expectation-maximization algorithm. Based on the HMM, we develop a realignment-based SNP-calling program, termed PyroHMMsnp, which realigns read sequences around homopolymers according to the error model and then infers the underlying genotype by using a Bayesian approach. Simulation experiments show that the performance of PyroHMMsnp is exceptional across various sequencing coverages in terms of sensitivity, specificity and F1 measure, compared with other tools. Analysis of the human resequencing data shows that PyroHMMsnp predicts 12.9% more SNPs than Samtools while achieving a higher specificity. (http://code.google.com/p/pyrohmmsnp/).  相似文献   

9.
10.
11.
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways.Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application.PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.
This is a PLOS Computational Biology software article.
  相似文献   

12.

Background

Dynamic visual exploration of detailed pathway information can help researchers digest and interpret complex mechanisms and genomic datasets.

Results

ChiBE is a free, open-source software tool for visualizing, querying, and analyzing human biological pathways in BioPAX format. The recently released version 2 can search for neighborhoods, paths between molecules, and common regulators/targets of molecules, on large integrated cellular networks in the Pathway Commons database as well as in local BioPAX models. Resulting networks can be automatically laid out for visualization using a graphically rich, process-centric notation. Profiling data from the cBioPortal for Cancer Genomics and expression data from the Gene Expression Omnibus can be overlaid on these networks.

Conclusions

ChiBE’s new capabilities are organized around a genomics-oriented workflow and offer a unique comprehensive pathway analysis solution for genomics researchers. The software is freely available at http://code.google.com/p/chibe.  相似文献   

13.
The differentiation of intestinal stem cells involves few DNA methylation changes, assayed by bisulfite sequencing, in contrast to other adult somatic stem cell hierarchies.Please see related Research article: http://genomebiology.com/2013/14/5/R50  相似文献   

14.
DNA methylation differences capture substantial information about the molecular and gene-regulatory states among biological subtypes. Enrichment-based next generation sequencing methods such as MBD-isolated genome sequencing (MiGS) and MeDIP-seq are appealing for studying DNA methylation genome-wide in order to distinguish between biological subtypes. However, current analytic tools do not provide optimal features for analyzing three-group or larger study designs. MethylAction addresses this need by detecting all possible patterns of statistically significant hyper- and hypo- methylation in comparisons involving any number of groups. Crucially, significance is established at the level of differentially methylated regions (DMRs), and bootstrapping determines false discovery rates (FDRs) associated with each pattern. We demonstrate this functionality in a four-group comparison among benign prostate and three clinical subtypes of prostate cancer and show that the bootstrap FDRs are highly useful in selecting the most robust patterns of DMRs. Compared to existing tools that are limited to two-group comparisons, MethylAction detects more DMRs with strong differential methylation measurements confirmed by whole genome bisulfite sequencing and offers a better balance between precision and recall in cross-cohort comparisons. MethylAction is available as an R package at http://jeffbhasin.github.io/methylaction.  相似文献   

15.
Patterns of linkage disequilibrium, homoplasy, and incompatibility are difficult to interpret because they depend on several factors, including the recombination process and the population structure. Here we introduce a novel model-based framework to infer recombination properties from such summary statistics in bacterial genomes. The underlying model is sequentially Markovian so that data can be simulated very efficiently, and we use approximate Bayesian computation techniques to infer parameters. As this does not require us to calculate the likelihood function, the model can be easily extended to investigate less probed aspects of recombination. In particular, we extend our model to account for the bias in the recombination process whereby closely related bacteria recombine more often with one another. We show that this model provides a good fit to a data set of Bacillus cereus genomes and estimate several recombination properties, including the rate of bias in recombination. All the methods described in this article are implemented in a software package that is freely available for download at http://code.google.com/p/clonalorigin/.  相似文献   

16.
Next generation sequencing (NGS) of metagenomic samples is becoming a standard approach to detect individual species or pathogenic strains of microorganisms. Computer programs used in the NGS community have to balance between speed and sensitivity and as a result, species or strain level identification is often inaccurate and low abundance pathogens can sometimes be missed. We have developed Taxoner, an open source, taxon assignment pipeline that includes a fast aligner (e.g. Bowtie2) and a comprehensive DNA sequence database. We tested the program on simulated datasets as well as experimental data from Illumina, IonTorrent, and Roche 454 sequencing platforms. We found that Taxoner performs as well as, and often better than BLAST, but requires two orders of magnitude less running time meaning that it can be run on desktop or laptop computers. Taxoner is slower than the approaches that use small marker databases but is more sensitive due the comprehensive reference database. In addition, it can be easily tuned to specific applications using small tailored databases. When applied to metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can provide strain level identification. Taxoner is written in C for Linux operating systems. The code and documentation are available for research applications at http://code.google.com/p/taxoner.  相似文献   

17.
We present GobyWeb, a web-based system that facilitates the management and analysis of high-throughput sequencing (HTS) projects. The software provides integrated support for a broad set of HTS analyses and offers a simple plugin extension mechanism. Analyses currently supported include quantification of gene expression for messenger and small RNA sequencing, estimation of DNA methylation (i.e., reduced bisulfite sequencing and whole genome methyl-seq), or the detection of pathogens in sequenced data. In contrast to previous analysis pipelines developed for analysis of HTS data, GobyWeb requires significantly less storage space, runs analyses efficiently on a parallel grid, scales gracefully to process tens or hundreds of multi-gigabyte samples, yet can be used effectively by researchers who are comfortable using a web browser. We conducted performance evaluations of the software and found it to either outperform or have similar performance to analysis programs developed for specialized analyses of HTS data. We found that most biologists who took a one-hour GobyWeb training session were readily able to analyze RNA-Seq data with state of the art analysis tools. GobyWeb can be obtained at http://gobyweb.campagnelab.org and is freely available for non-commercial use. GobyWeb plugins are distributed in source code and licensed under the open source LGPL3 license to facilitate code inspection, reuse and independent extensions http://github.com/CampagneLaboratory/gobyweb2-plugins.  相似文献   

18.
Genome-wide 5-hydroxymethylome analysis of a rodent hepatocarcinogen model reveals that 5-hydroxymethylcytosine-dependent active DNA demethylation may be functionally important in the early stages of carcinogenesis.See research article http://genomebiology.com/2012/13/10/R93Epigenetic information is crucial for eukaryotic organisms as it impacts a broad range of biological processes from gene regulation to disease pathogenesis. This information is mainly embodied in DNA methylation, carried by 5-methylcytosine (5mC, the fifth base), and various histone modifications. It is well-established that epigenetics can play critical roles in cancer development; a highly distorted epigenome (including aberrant DNA methylation and histone modification patterns) is now accepted to be a general feature of many cancers [1,2]. Understanding the molecular mechanisms of epigenetic alterations at the early stages of tumorigenesis may therefore be important in developing new cancer treatments.A cell''s DNA methylation pattern is a dynamic status balanced by methylation and demethylation, and aberrant DNA methylation has been attributed to either excessive methylation or deficient demethylation. A study by Meehan, Moggs and colleagues, published in this issue of Genome Biology [3], now links active demethylation with the early stages of carcinogenesis by investigating the non-genotoxic carcinogen phenobarbital (PB)-induced rodent hepatocarcinogen model.  相似文献   

19.
20.
The integration of genomic and epigenomic data is an increasingly popular approach for studying the complex mechanisms driving cancer development. We have developed a method for evaluating both methylation and copy number from high-density DNA methylation arrays. Comparing copy number data from Infinium HumanMethylation450 BeadChips and SNP arrays, we demonstrate that Infinium arrays detect copy number alterations with the sensitivity of SNP platforms. These results show that high-density methylation arrays provide a robust and economic platform for detecting copy number and methylation changes in a single experiment. Our method is available in the ChAMP Bioconductor package: http://www.bioconductor.org/packages/2.13/bioc/html/ChAMP.html.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号