首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yamashita, T. 1987. Modulated degradation of ribulose ftisphosphatecarboxylase in leaves on top-pruned shoots of the mulberry tree(Morus alba L.).—J. exp. Bot. 38: 1957–1964. The effects of pruning shoot tops on the synthesis and degradationof ribulose 1,5–Wsphosphate carboxylase (RuBPCase) inleaves on remaining shoots were investigated in mulberry trees.Leucine labelled with 14C was fed to leaf discs from field-grownmulberry trees and 14C incorporation into RuBPCase was examined.Proportion of 14C in RuBPCase to leucine–14C absorbedby leaf discs was remarkably lowered by top-pruning, thoughoccasionally a slight increase was observed soon after pruning.Yet RuBPCase content in leaves on top-pruned shoots became progressivelyhigher than that in leaves on intact shoots. Changes in 14Cin Ru1BPCase in leaves of mulberry saplings previously fed 14CO2were followed. Following 14CO2 feeding, the attainment of themaximal level of 14C in RuBPCase was retarded by top-pruning.The highest level of 14C in RuBPCase was maintained in leaveson top-pruned shoots but decreased in leaves on intact shoots.Specific radioactivity in RuBPCase continued to increase inleaves on top-pruned shoots even after attaining a maximum levelin the control leaves. These facts suggest that the increasein RuBPCase by top-pruning results from a cessation of its degradationfor the remobilization of nitrogen for newly developing leaveson shoot tops. Key words: RuBP carboxylase, shoot pruning, mulberry (Morus alba)  相似文献   

2.
Effects of external nitrogen supply on quantity and activityof ribulose 1,5-bisphosphate carboxylase (RuBPCase) in mulberryleaves (Morus alba L. cv. Shin-ichinose) were examined. PhotosyntheticCO2 fixation and the contents of chlorophyll and phosphoruswere increased by the increased N supply. RuBPCase-protein concentrationand its proportion to total soluble-protein or to total-N rosecorrespondingly as the N supply increased. Specific enzyme activityexpressed on a RuBPCase protein basis was not affected by theN supply. Morus alba L. (mulberry), N nutrition, RuBPCase protein content, photosynthesis  相似文献   

3.
At the onset of budding in mulberry saplings (Morus alba L.,cv. Shin-ichinose), the ATP, ADP and carbohydrate contents beganto decline rapidly. This decline continued until RuBPCase activitybegan during the development of the leaves. The concentrationsof these constituents and the value for the adenylate energycharge, though partially restored, were lower than the initialvalues even eight weeks after planting. (Received March 7, 1983; Accepted May 25, 1983)  相似文献   

4.
C4 cereals (Zea maya L. and Sorghum bicolor L. Moench) and C3cereals (Triticum aestivum L. and Hordeum vulgare L) were grownin nutrient solutions with constant, interrupted, or absentpotassium supply. The lack of potassium retarded shoot growthand depressed the chlorophyll accumulation in all species ina similar way. After the renewal of potassium, the differencesin the compensation for growth retardation were not correlatedwith the photosynthetic system, but with the recovery of chlorophyllaccumulation in younger leaves. As important for the compensationof shoot growth retardation was a slower senescence of old leavescompared to plants with a constant potassium supply. This wasshown by the chlorophyll content and PEP carboxylase activity.In contrast to C3 cereals, the C4 cereals did not react withhigher chlorophyll contents to the same extent after the renewalof the postassium supply. The PEP carboxylase activity, however,was immediately raised higher than in control leaves. Chlorophylland PEP carboxylase activity increased simultaneously only inless aged leaves.  相似文献   

5.
The changes of protein and amino acid contents of young and old leaves from field citrus trees [ Citrus sinensis (L.) Osbeck cv. Washington Navel] were studied throughout the year. the total protein content of old leaves decreased during the spring and summer growths, whereas in young developing leaves it increased rapidly. The end of the spring and summer flushes was followed by a quick recovery of the initial protein content due to a process of reversible senescence. The evolution of SDS-PAGE proteinograms indicated that most of the foliar proteins contributed to the nitrogen mobilization during the spring and summer growth periods. A protein band of molecular weight ca 55,000, probably containing the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, decreased relatively more than the others. The amino acid content of the leaves increased during winter time due to the accumulation of proline, which was mobilized during the spring flush. The possible nitrogen storage function of proline is discussed.  相似文献   

6.
Nitrogen budgets of fully expanded young leaves of Spinaciaoleracea L. grown under three growth irradiances at four nitrateconcentrations, were compared in relation to photosynthesis.The proportion of nitrogen allocated to thylakoid membraneswas 24% of total leaf nitrogen irrespective of the growth conditions.The composition of the photosynthetic components in thylakoidmembranes was affected by growth irradiance but unaffected bynitrogen levels. The proportion of total leaf nitrogen allocatedto soluble protein and RuBP carboxylase (RuBPCase) increasedwith the increases in nitrogen and in irradiance levels. Someultrastructural properties of chloroplasts and their intra-leafgradients were also compared. The results suggest that nitrogennutrition affects the amount of thyalkoids per unit leaf areabut neither the properties of thyalkoids nor their intra-leafgradient. Growth irradiance, however, controls both the propertiesand the amount of thylakoids. The ratio of in vitro RuBPCase activity to electron transport/photophosphorylationactivity increased with the increase in nitrogen level, butdecreased with the increase in growth irradiance. The changein the ratio of in vitro activities may serve to balance thein vivo activities, given that the in vivo efficiency of RuBPCasedeclines with the increase in volume of a chloroplast due tothe increased liquid phase resistance to CO2 diffusion. 3Present address: Plant Environmental Biology Group, ResearchSchool of Biological Sciences, The Australian National University,P.O. Box 475, Canberra, A.C.T. 2601, Australia. (Received July 29, 1987; Accepted November 2, 1987)  相似文献   

7.
Activities of Carboxylation Enzymes in Freshwater Macrophytes   总被引:2,自引:0,他引:2  
Fifteen species of freshwater macrophytes, mainly from cool,temperate waters, were assayed for ribulose bisphosphate carboxylase-oxygenase(RuBPCase) and phosphoenolpyruvate carboxylase (PEPCase) activities.In extracts from all the species RuBPCase was the most activecarboxylation enzyme, and the RuBPCase/PEPCase ratio was atleast 2·0, even for the submersed species Isoetes lacustrisL. and Littorella unifiora (L.) Aschers. which have been reportedto show Crassulacean Acid Metabolism (CAM) activity. The PEPCaseactivity in I.lacustris was lower than that found in some non-CAM-likespecies. In this respect, I.lacustris and L unifiora differfrom most terrestrial CAM plants. However, these two species,along with Potamogeton praelongus Wulf. and Juncus bulbosusvar.fluitans L., had the lowest RuBPCASE/PEPCase ratios, lowerthan found in terrestrial C3 species; suggesting that the potentialfor substantial photosynthetic metabolism of C4 acids existsin some temperate, submersed plants. In the three amphibiousspecies (Potamogeton polygonifolius Pourr., Mentha aquaticaL., and Hippuris vulgaris L.) examined, the aerial leaves exhibitedhigher RuBPCase activities than the submersed leaves. Key words: Ribulose bisphosphate carboxylase-oxygenase, phosphoenolpruvate carboxylase, freshwater macrophytes  相似文献   

8.
Mulberry Leaf Metabolism under High Temperature Stress   总被引:5,自引:0,他引:5  
Effects of high temperature on the activity of photosynthetic enzymes and leaf proteins were studied in mulberry (Morus alba L. cv. BC2-59). A series of experiments were conducted at regular intervals (120, 240 and 360 min) to characterize changes in activities of ribulose-1,5-bisphosphate carboxylase (RuBPC) and sucrose phosphate synthase (SPS), photosystem 2 (PS 2) activity, chlorophyll (Chl), carotenoid (Car), starch, sucrose (Suc), amino acid, free proline, protein and nucleic acid contents in leaves under high temperature (40 °C) treatments. High temperature markedly reduced the activities of RuBPC and SPS in leaf extracts. Chl content and PS 2 activity in isolated chloroplasts were also affected by high temperature, particularly over 360 min treatment. Increased leaf temperature affected sugar metabolism through reductions in leaf starch content and sucrose-starch balance. While total soluble protein content decreased under heat, total amino acid content increased. Proline accumulation (1.5-fold) was noticed in high temperature-stressed leaves. A reduction in the contents of foliar nitrogen and nucleic acids (DNA and RNA) was also noticed. SDS-PAGE protein profile showed few additional proteins (68 and 85 kDa) in mulberry plants under heat stress compared to control plants. Our results clearly suggest that mulberry plants are very sensitive to high temperature with particular reference to the photosynthetic carbon metabolism.  相似文献   

9.
In situ synthesis and degradation of ribulose bisphosphate carboxylase(RuBPCase) were studied quantitatively in the 12th leaf bladeof the rice plant during the life span of the leaf. Levels ofRuBPCase protein were determined by rocket immunoelectrophoresis.The amounts of RuBPCase synthesized and degraded were estimatedusing 15N tracer. RuBPCase was scarcely recognized in the leaf when the tip ofthe leaf had just emerged from the 1 lth leaf sheath. Then itincreased rapidly and reached its maximum content a week afterthe completion of leaf expansion. At this time RuBPCase accountedfor 56% of the soluble leaf protein N (26% of the total leafN). The total amount of RuBPCase synthesized up to this timewas about 90% of the amount synthesized throughout the leaf'slife. Degradation of RuBPCase started about the time when it reachedthe maximum content and proceeded at a faster rate during senescencethan that of the remaining soluble protein. When the leaf hadsenesced completely, it contained little measurable RuBPCasealthough the total leaf N was about 30% of the maximum level.These results clearly suggest that RuBPCase is a major N componentwhich is used as remobilized N for the growth of young tissues. Influx and efflux of N and the synthesis and degradation ofRuBPCase are discussed in relation to leaf age. (Received February 18, 1983; Accepted June 16, 1983)  相似文献   

10.
Inflorescence leaves of citrus (Citrus sinensis L. Osbeck) accumulatecarbohydrate reserves at the beginning of the fruit set period.This effect is mimicked by exogenous GA3 applications in deflorateinflorescences. The effect of the hormone on two processes thatcould result in carbohydrate accumulation, i.e. increased ribulosebisphosphate carboxylase (RuBPCase) activity and changes inthe import/export balance of assimilates in the sprouts, wasstudied. Neither RuBPCase activity nor respiration rates were affectedby the hormonal treatment. On the other hand, blocking of thephloem connections with the rest of the plant induced an increasein carbohydrate contents in the leaves that was proportionallylower in GA3-treated sprouts than in control deflorate inflorescences.This increase was minimal in leaves from inflorescences at laterstages of fruit development. This was in spite of a lower fruitgrowth rate that, in turn, brought about a decrease in totaldry weight of the sprout. In contrast, total dry weight washigher in girdled deflorate inflorescences, whether or not theywere treated with the hormone. The presence of the fruit induceda thickening of the stems of intact inflorescences that wasalso seen in ungirdled GA2-treated sprouts. This increase indry weight per unit length, however, had a different chemicalbasis depending upon whether it was caused by the fruit or thehormone. From these data, the possible causes for the enhancement ofcarbohydrate accumulation in inflorescence leaves, and the involvementof gibberellin in the effect of fruit on the sprouts is discussed. Carbohydrates, Citrus sinensis L. Osbeck, gibberellic acid, girdling, orange, ribulose bisphosphate carboxylase, source-sink  相似文献   

11.
Changes in ribulose bisphosphate carboxylase (RuBPCase) and proteolytic activity were followed in the flag leaf and second leaf of field-grown winter wheat (cv. Arthur). These changes were followed in relation to changes in leaf chlorophyll, protein, and photosynthesis, and seed development. Levels of RuBPCase were determined by rocket immunoelectrophoresis as described previously (Wittenbach 1978 Plant Physiol 62: 604-608). RuBPCase constituted 40 to 45% of the total soluble protein in the flag leaf and an even higher percentage of the soluble protein in the second leaf. This ratio remained unchanged until senescence when RuBPCase protein was apparently lost at a faster rate than total soluble protein. No change in the specific activity of RuBPCase on either a milligram protein or RuBPCase basis was observed until senescence. A close correlation existed among the various indices of senescence in the field, namely, the decline in chlorophyll, protein, photosynthesis, and RuBPCase activity. In addition, proteinase activity increased with the onset of senescence. These enzymes readily degraded RuBPCase, exhibiting a pH optimum of 4.8 to 5.0 and a temperature optimum of 50 C. Proteinase activity was modified by sulfydryl reagents suggesting the presence of sulfydryl groups at or near the active sites.  相似文献   

12.
Growth of wheat seedlings in the presence of the phytotoxin tagetitoxin produces pigment-deficient leaves of normal size and morphology whose cells contain only rudimentary plastids. We could not detect the accumulation of either the plastid-encoded large subunit or the nuclear-encoded small subunit of the chloroplast stromal enzyme ribulose 1,5-bisphosphate carboxylase (RuBPCase) in western blots of protein extracted from leaves of such seedlings. Sucrose gradient centrifugation profiles showed that plastid ribosomes were essentially absent in toxin-treated leaf tissue while cytoplasmic ribosomes were relatively unaffected. Northern blot analysis of RNA in toxin-treated leaves showed a deficiency of plastid ribosomal RNA (16S and 23S) as well as reduced levels of plastid mRNAs for the large subunit of RuBPCase and for the 32 kilodalton thylakoid QB polypeptide. Northern analysis also showed that the nuclear-encoded rbcS mRNA for the small subunit of RuBPCase is present in only trace amounts in toxin-treated leaves.  相似文献   

13.
A series of experiments were conducted to characterize the water stress-induced changes in the activities of RuBP carboxylase (RuBPCO) and sucrose phosphate synthase (SPS), photosystem 2 activity, and contents of chlorophylls, carotenoids, starch, sucrose, amino acids, free proline, proteins and nucleic acids in mulberry (Morus alba L. cv. K-2) leaves. Water stress progressively reduced the activities of RuBPCO and SPS in the leaf extracts, the chlorophyll content, and PS2 activity in isolated chloroplasts. Plants exposed to drought showed lower content of starch and sucrose but higher total sugar content than control plants. While the soluble protein content decreased under water stress, the amino acid content increased. Proline accumulation (2.5-fold) was noticed in stressed leaves. A reduction in the contents of DNA and RNA was observed. Reduced nitrogen content was associated with the reduction in nitrate reductase activity. SDS-PAGE protein profile showed few additional proteins (78 and 92 kDa) in the water stressed plants compared to control plants.  相似文献   

14.
Ribulose-1,5-bisphosphate carboxylase (RuBPCase) has been quantified by immunological methods in Thiobacillus neapolitanus cultivated under various growth conditions in the chemostat at a fixed dilution rate of 0.07 h-1. RuBPCase was a major protein in T. neapolitanus accounting for a maximum of 17% of the total protein during CO2 limitation and for a minimum of 4% during either ammonium- or thiosulfate limitation in the presence of 5% CO2 (v/v) in the gasphase. The soluble RuBPCase (i.e. in the cytosol) and the particulate RuBPCase (i.e. in the carboxysomes) were shown to be immunologically identical. The intracellular distribution of RuBPCase protein between carboxysomes and cytosol was quantified by rocket immunoelectrophoresis. The particulate RuBPCase content, which correlated with the volume density of carboxysomes, was minimal during ammonium limitation (1.3% of the total protein) and maximal during CO2 limitation (6.8% of the total protein). A protein storage function of carboxysomes is doubtful since nitrogen starvation did not result in degradation of particulate RuBPCase within 24 h. Proteolysis of RuBPCase was not detected. Carboxysomes, on the other hand, were degraded rapidly (50% within 1 h) after change-over from CO2 limitation to thiosulfate limitation with excess CO2. Particulate RuBPCase protein became soluble during this degradation of carboxysomes, but this did not result in an increase in soluble RuBPCase activity. Modification of RuBPCase resulting in a lower true specific activity was suggested to explain this phenomenon. The true specific activity was very similar for soluble and particulate RuBPCase during various steady state growth conditions (about 700 nmol/min·mg RuBPCase protein), with the exception of CO2-limited growth when the true specific activity of the soluble RuBPCase was extremely low (260 nmol/min ·mg protein). When chemostat cultures of T. neapolitanus were exposed to different oxygen tensions, neither the intracellular distribution of RuBPCase nor the content of RuBPCase were affected. Short-term labelling experiments showed that during CO2 limitation, when carboxysomes were most abundant, CO2 is fixed via the Calvin cycle. The data are assessed in terms of possible functions of carboxysomes.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - PEP phosphoenolpyruvate - RIE rocket immunoelectrophoresis - CIE crossed immunoelectrophoresis  相似文献   

15.
Photosynthetic CO2 assimilation, transpiration, ribulose-1,5-bisphosphate carboxylase (RuBPCase), and soluble protein were reduced in leaves of water-deficit (stress) `Valencia' orange (Citrus sinensis [L.] Osbeck). Maximum photosynthetic CO2 assimilation and transpiration, which occurred before midday for both control and stressed plants, was 58 and 40%, respectively, for the stress (−2.0 megapascals leaf water potential) as compared to the control (−0.6 megapascals leaf water potential). As water deficit became more severe in the afternoon, with water potential of −3.1 megapascals for the stressed leaves vs. −1.1 megapascals for control leaves, stressed-leaf transpiration declined and photosynthetic CO2 assimilation rapidly dropped to zero. Water deficit decreased both activation and total activity of RuBPCase. Activation of the enzyme was about 62% (of fully activated enzyme in vitro) for the stress, compared to 80% for the control. Water deficit reduced RuBPCase initial activity by 40% and HCO3/Mg2+-saturated activity by 22%. However, RuBPCase for both stressed and control leaves were similar in Kcat (25 moles CO2 per mole enzyme per second) and Km for CO2 (18.9 micromolar). Concentrations of RuBPCase and soluble protein of stressed leaves averaged 80 and 85%, respectively, of control leaves. Thus, reductions in activation and concentration of RuBPCase in Valencia orange leaves contributed to reductions in enzyme activities during water-deficit periods. Declines in leaf photosynthesis, soluble protein, and RuBPCase activation and concentration due to water deficit were, however, recoverable at 5 days after rewatering.  相似文献   

16.
Effects were examined of barley powdery mildew (Erysiphe graminis f. sp. hordei) on the major leaf protein, ribulose-l,5-bisphosphate carboxylase (RuBPCase), and other enzymes of CO2 assimilation, phosphoenolpyruvate carboxylase (PEPcase) and malic enzymes, and enzymes associated with RuBPCase in the reductive pentose phosphate pathway. Activity of RuBPCase per unit fresh weight of leaf was inhibited by infection from the first sample, 3 days after inoculation, to the last sample, 24 days after inoculation, when healthy control leaves were visibly senescing. The inhibition occurred because the amount of RuBPCase protein (measured specifically by an immunological technique) was reduced from 6 days after inoculation and because activity per unit protein declined from 3 days until 21 days after inoculation, at which time there was little protein remaining. Activity of PEPcase per unit fresh weight of leaf was initially stimulated by infection but, thereafter, it was inhibited. Inhibition, like that also affecting malic enzymes (NAD) and (NADP), 3-phosphoglycerate kinase, and glyceraldehyde-3-phosphate dehydrogenases (NAD) and (NADP), was associated with a decline in amounts of total soluble minus RuBP Case protein per unit fresh weight of leaf. Reduced amounts of leaf protein may be associated with reduced nitrate uptake by roots and fungal demand for nitrogen in mildewed plants.  相似文献   

17.
When 8-day-old wheat seedlings (Triticum aestivum L. var. Chris) are placed in the dark the fully expanded primary leaves undergo the normal changes associated with senescence, for example, loss of chlorophyll, soluble protein, and photosynthetic capacity (Wittenbach 1977 Plant Physiol. 59: 1039-1042). Senescence in this leaf is completely reversible when plants are transferred to the light during the first 2 days, but thereafter it becomes an irreversible process. During the reversible stage of senescence the loss of ribulose bisphosphate carboxylase (RuBPCase) quantitated immunochemically, accounted for 80% of the total loss of soluble protein. There was no significant change in RuBPCase activity per milligram of antibody-recognized carboxylase during this stage despite an apparent decline in specific activity on a milligram of soluble protein basis. With the onset of the irreversible stage of senescence there was a rapid decline in activity per milligram of carboxylase, suggesting a loss of active sites. There was no increase in total proteolytic activity during the reversible stage of senescence despite the loss of carboxylase, indicating that this initial loss was not due to an increase in total activity. An 80% increase in proteolytic activity was correlated with the onset of the irreversible stage and the rapid decline in RuBPCase activity per milligram of carboxylase. Delaying senescence with zeatin reduced the rate of loss of carboxylase and delayed both the onset of the irreversible stage and the increase in proteolytic activity to the same degree, suggesting that these events are closely related. The main proteinases present in wheat and responsible for the increase in activity are the thiol proteinases. These proteinases have a high affinity for RuBPCase, exhibiting an apparent Km at 38 C of 1.8 × 10−7 m. The Km for casein was 1.1 × 10−6 m. If casein is representative of noncarboxylase protein, then the higher affinity for carboxylase may provide an explanation for its apparent preferential loss during the reversible stage of senescence.  相似文献   

18.
RYLE  G. J. A. 《Annals of botany》1972,36(3):497-512
A quantitative analysis of the 14C-labelled assimilate suppliedby leaves on the main shoot to terminal meristem, stem, tillers,and roots was conducted during parallel periods of reproductiveand vegetative development in Lolium temulentum. The initial rate of entry of carbon into the shoot varied withthe area and photosynthetic efficiency of the assimilating leaf.Subsequently, respiratory losses of carbon during translocationand incorporation of assimilate at the site of utilization alsovaried. The combined effect of these differences resulted inthe supply of recently assimilated carbon being twofold greaterin reproductive shoots than in vegetative shoots, while withinshoots the carbon supply of the youngest fully expanded leafranged from four-or five-fold greater than the oldest leaf inyoung shoots, to two-or three-fold greater in older shoots.In both reproductive and vegetative shoots, the two or threeyoungest leaves thus dominated the supply of carbon for meristematicgrowth. Meristematic tissue in expanding leaves and leaf primordia atthe terminal meristem of the vegetative shoot received 18–27per cent of the total shoot carbon. This meristem utilized aboutthe same proportion of shoot carbon when it developed into aninflorescence, indicating no major change in the level of meristematicactivity. The proportion of shoot carbon utilized in stem growthincreased as both reproductive and vegetative shoots aged; thisincreased meristematic activity in stem internodes was accompaniedby reduced export of carbon to roots, which received less than10 per cent of the shoot carbon when the experiments ended.The main shoot translocated 20–30 per cent of its recentlyassimilated carbon to developing and rooted tillers, which assinks for carbon were thus as important as the terminal meristemand stem. This outward flow of carbon continued relatively uncheckedwhen donor and receptor shoots developed inflorescences.  相似文献   

19.
MAGGS  D. H. 《Annals of botany》1960,24(3):345-355
It is shown that the shoots of a young tree act additively ratherthan competitively, that is, each extra shoot produces a definiteextra increment in total weight, not that a constant incrementis divided among the shoots of the young tree. One-year apple-trees of 3 varieties were rigorously selectedfor size and weight, and in the spring disbudded to 1, 2, 3,or n, the natural number of shoots per plant. The treatmentswere applied in the 1st or 2nd year after planting and the incrementduring the treatment year was determined. Provided not morethan a few secondary shoots were produced on the current shoots,each additional primary shoot produced an increase in weight.In one variety plants with 1 primary shoot produced many secondariesand these plants were heavier than those with 2 primaries. The largest shoot was not greatly affected in size by the presenceof other shoots except in the variety which produced secondaryshoots readily. These were most abundant on plants with 1 primaryshoot, fewer on plants with 2, and almost negligible on plantswith 3 and n shoots. Treatment and varietal effects on the percentage distributionof increment as leaves, new stem, old-stem increment, and root,were small. The percentage of leaves in the 2nd year was abouthalf what it was in the 1st year; the percentage of root wasnearly the same in both years.  相似文献   

20.
Buds of shoots from the trunk, main branches, secondary branchesand short branches of 10–21 year-old Nothofagus pumiliotrees were dissected and their contents recorded. The numberof differentiated nodes in buds was compared with the numberof nodes of sibling shoots developed at equivalent positionsduring the following growing season. Axillary buds generallyhad four cataphylls, irrespective of bud position in the tree,whereas terminal buds had up to two cataphylls. There were morenodes in terminal buds, and the most distal axillary buds, oftrunk shoots than in more proximal buds of trunk shoots, andin all buds of shoots at all other positions. The highest numberof nodes in the embryonic shoot of a bud varied between 15 and20. All shoots had proximal lateral buds containing an embryonicshoot with seven nodes, four with cataphylls and three withgreen leaf primordia. The largest trunk, and main branch, shootswere made up of a preformed portion and a neoformed portion;all other shoots were entirely preformed. In N. pumilio, theacropetally-increasing size of the sibling shoots derived froma particular parent shoot resulted from differences in: (1)the number of differentiated organs in the buds; (2) the probabilityof differentiation of additional organs during sibling shootextension; (3) sibling shoot length; (4) sibling shoot diameter;and (5) the death of the apex and the most distal leaves ofeach sibling shoot. Copyright 2000 Annals of Botany Company Axis differentiation, branching, bud structure, leaf primordia, neoformation, Nothofagus pumilio, preformation, size gradient  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号