首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NK cells mediate both direct cytotoxicity against a variety of tumor cells and indirect (FcR-dependent) cytotoxicity against antibody-coated targets. When cloned human NK cells (CD16+/CD3-) were exposed to NK-sensitive targets for 30 min, the level of inositol phosphates rose two to five times above background. The rise in inositol phosphates induced by NK-sensitive targets was paralleled by an increase in intracellular free calcium concentration ([Ca2+]i). A panel of tumor cells that were resistant to NK cell lysis did not stimulate significant levels of inositol phosphate production and did not induce an elevation of intracellular free calcium. Ligation of the FcR (CD16) with the mAb 3G8 also triggered phosphoinositide turnover. Kinetic experiments demonstrated that stimulation by either susceptible target cells or by FcR ligation led to rapid (less than 1 min) generation of the Ca2+-mobilizing second messenger, inositol trisphosphate, with slower accumulation of inositol bisphosphate and inositol monophosphate. Previous studies have demonstrated that activation of the cAMP-dependent second messenger pathway strongly inhibits NK cell-mediated cytotoxic functions. Treatment of NK effector cells with forskolin to elevate intracellular cAMP levels resulted in a concentration-dependent inhibition of phosphoinositide hydrolysis induced by both NK-sensitive targets and 3G8-mediated FcR ligation. These results suggest that phosphoinositide turnover represents a critical early event in the human NK cell cytolytic process. Moreover, the potent inhibitory effect of cAMP on NK cell cytotoxicity may be explained by the uncoupling of NK receptors from phospholipase C-mediated phosphoinositide hydrolysis.  相似文献   

2.
Physiologic activation of protein kinase C limits IL-2 secretion   总被引:2,自引:0,他引:2  
Interaction of Ag, antibodies against the T cell receptor complex, or mitogenic lectins with T lymphocytes induces hydrolysis of membrane phospholipids leading to the production of diacylglycerol (DAG). DAG then activates the Ca2+- and phospholipid-dependent phosphotransferase, protein kinase C (PKC). Increases in DAG concentrations are transient as is the increase in PKC activity. Phorbol esters, which induce potent, prolonged activation of PKC, augment many T lymphocyte responses, including cell proliferation and secretion of the T cell growth factor IL-2. Therefore, it has been suggested that activation of PKC is a positive regulatory signal in T lymphocytes. We have determined the consequences of transient stimulation of PKC, and of depletion of PKC, on early cell activation signals and on production of IL-2 by the murine lymphoma line LBRM 331A5. When this cell line is depleted of PKC overnight incubation in high concentrations of phorbol esters, lectin-induced IL-2 secretion is augmented. Similarly, mitogen-induced changes in [Ca2+]i and phosphoinositide metabolism were augmented in these cells. In contrast, a short preactivation of PKC abrogated these early transmembrane signaling events. This suggested that normal physiologic activation of PKC may limit cell activation and decrease IL-2 production. We compared the effects of phorbol esters and mezerein, which produce prolonged activation of PKC, with those of diacylglycerol analogs, which induce transient activation of PKC. At concentrations that give similar levels of PKC activation, phorbol esters and mezerein, but not DAG analogs, increased IL-2 secretion. This suggests that prolonged, nonphysiologic activation of PKC is required to augment IL-2 secretion. Therefore, physiologic activation of PKC may not augment T cell activation but instead may function to decrease cell activation and limit IL-2 secretion.  相似文献   

3.
Single pituitary gonadotrophs exhibit episodes of spontaneous fluctuations in cytoplasmic calcium concentration [( Ca2+]i) due to entry through voltage-sensitive calcium channels (VSCC) and show prominent agonist-induced oscillations in [Ca2+]i that are generated by periodic release of intracellular Ca2+. Gonadotropin releasing hormone (GnRH) elicited three types of Ca2+ responses: at low doses, subthreshold, with an increase in basal [Ca2+]i; at intermediate doses, oscillatory, with dose-dependent modulation of spiking frequency; and at high doses, biphasic, without oscillations. Elevation of [Ca2+]i or activation of protein kinase C (PKC) did not influence the frequency of agonist-induced [Ca2+]i spikes but caused dose-dependent reductions in amplitude for all types of Ca2+ response. Stimulation of transient Ca2+ spikes by GnRH was followed by inhibition of the spontaneous fluctuations. GnRH also reduced the ability of high extracellular K+ to promote Ca2+ influx through VSCC. Activation of PKC by phorbol esters stimulated Ca2+ influx in quiescent cells but inhibited influx when VSCC were already activated, either spontaneously or by high K+. In contrast to their biphasic actions on [Ca2+]i, phorbol esters exerted only stimulatory actions on gonadotropin release, even when Ca2+ influx was concomitantly reduced. However, pituitary cells had to be primed with an appropriate [Ca2+]i level before exocytosis could be amplified by PKC. In PKC-depleted cells, all actions of phorbol esters on Ca2+ entry and amplitude modulation, and on LH release, were abolished. GnRH-induced LH secretion was also significantly reduced, especially the plateau phase of the response. These data indicate that Ca2+ and PKC serve as interacting signals during the cascade of cellular events triggered by agonist stimulation, in which Ca2+ turns cell responses on or off, and PKC amplifies the positive and negative effects of Ca2+.  相似文献   

4.
Resting T lymphocytes proliferate in response to a combination of a calcium ionophore and a phorbol ester. This observation suggests that an increase in intracellular calcium free ion concentration [Ca2+]i and activation of protein kinase C (PKC) are sufficient signaling events for the initiation of T cell proliferation. In contrast, an accessory cell-generated costimulatory signal, acting independently of the rise in [Ca2+]i and PKC activation, is required for Ag-induced proliferation of type I T cell clones. We now report that this costimulatory signal is unexpectedly also being delivered via a cell-cell interaction during the response to ionomycin and phorbol ester. In the absence of this signal (at limiting cell numbers), T cells fail to divide. We also demonstrate that proliferation in response to immobilized anti-CD3 mAb requires the cell-cell interaction. These results suggest a model of T cell stimulation in which activation of a costimulatory signaling pathway is important in the regulation of the IL-2 gene, and only in the presence of this (third) signal can an increase in [Ca2+]i and PKC activity induce T cell proliferation. Such a model predicts that IL-2-dependent expansion of T cell clones in vivo in response to Ag receptor occupancy requires the delivery of an independent accessory cell-derived co-stimulatory signal.  相似文献   

5.
CD43 is a constitutively phosphorylated 115-kDa sialoglycoprotein expressed on a variety of blood cells including lymphocytes and monocytes. L10, a mAb directed against CD43, triggers T cell activation and enhances hydrogen peroxide production in monocytes. Activation of mononuclear cells by L10 initiates phosphoinositides hydrolysis, C2+ mobilization, and protein kinase C (PKC) activation. In turn, activated PKC hyperphosphorylates CD43, suggesting a potential role for PKC in the regulation of signaling via CD43. To address this issue, we have analyzed the effect of PKC activation by the tumor promoter PMA on L10-triggered rise in intracellular free Ca2+ concentrations ([Ca2+]i). Treatment of mononuclear cells with PMA profoundly inhibited the increase in [Ca2+]i induced by L10. The inhibition of CD43-mediated signaling by PMA was due, in part, to uncoupling of CD43 from the signal-transducing G protein. This was evidenced by the comparatively modest inhibition by PMA of the increase in [Ca2+]i induced by the direct G protein activator AlF4-. PMA treatment did not affect the surface expression of CD43. However, it induced the hyperphosphorylation of CD43, the extent of which correlated with the inhibition of CD43-mediated increase in [Ca2+]i. Staurosporine, a potent inhibitor of PKC, abrogated the hyperphosphorylation of CD43 and normalized CD43-mediated signaling in PMA-treated cells. Significantly, in the absence of PMA, staurosporine enhanced the rise in [Ca2+]i triggered by L10, suggesting that engagement of CD43 by activating ligands results in feedback inhibition by PKC. It is concluded that activation of PKC inhibits signaling via CD43 by mechanisms involving phosphorylation and uncoupling of CD43 from the signal-transducing apparatus and by distal, post-receptor events.  相似文献   

6.
The role of protein kinase C PKC in B cell activation is controversial. These studies were undertaken to determine whether protein kinase C has a stimulatory or inhibitory role in B cell activation. We found that treatment of B cells for a short period of time (30 min) with the PKC activator phorbol 12,13-dibutyrate (PDBU) primed the cells for enhanced proliferative responses to anti-immunoglobulin (anti-Ig) antibody whereas treatment for a longer period of time (3 h or more) resulted in suppression of proliferation. The enhanced proliferative response to treatment of B cells with PDBU for short periods of time was associated with inhibition of anti-Ig-stimulated increases in phosphatidyl 4,5-bisphosphate (PIP2) hydrolysis and inhibition of increases in [Ca2+]i, indicating that activation of PKC per se might be sufficient for enhancing B cell activation. The time-dependent effect of phorbol esters on the inhibition of B cell proliferation was found to be closely correlated with the kinetics of disappearance of PKC as measured by Western blot and by enzymatic activity but not with inhibition of [Ca2+]i and PIP2. These data demonstrate a bimodal time-dependent effect of PDBU on B cell activation and suggest that (a) the inhibitory effect of phorbol ester on anti-Ig-induced proliferation may be due to the disappearance of PKC rather than to the inhibition of PIP2 and Ca2+; and (b) the early activation of PKC is a stimulatory rather than an inhibitory signal in the induction of B lymphocyte proliferation by anti-Ig.  相似文献   

7.
Gonadotropin-releasing hormone (GnRH) regulates pituitary gonadotropin release by a Ca2+-dependent mechanism involving receptor-mediated phosphoinositide hydrolysis. Previous studies indicate that activation of pituitary protein kinase C (PKC), while not required for acute gonadotropin release in response to GnRH, is likely involved in the chronic regulation of gonadotrope responsiveness. Studies from our laboratory have shown that activation of PKC by phorbol esters produces both the uncoupling of GnRH-stimulated phosphoinositide hydrolysis and the selective enhancement of GnRH agonist binding in pituitary cell cultures. In the present work, we have examined the possibility that these processes are related in mechanism. Dissociation of bound agonist radioligand at 23 degrees C was found to be reduced in the presence of phorbol esters, and ligand bound in the presence of phorbol ester was resistant to displacement by competing ligands at 4 degrees C. However, agonist bound in the presence of phorbol ester was dissociable by subsequently washing cells at pH 3. Receptor photoaffinity labeling studies confirmed that agonist association with membrane component(s) identified as the GnRH receptor was increased in the presence of phorbol ester. These results suggest that, in the presence of a phorbol ester PKC activator, agonist-occupied GnRH receptors remain at the cell surface, but are sequestered in some manner. In other experiments, cell preloaded with [3H]inositol were treated with GnRH agonist ligand and phorbol ester at 4 degrees C to form a pool of sequestered, agonist-occupied receptors, and then displaceable (nonsequestered) agonist was removed by incubation with antagonist ligand. After addition of LiCl and warming to 37 degrees C, [3H]inositol phosphate production (an index of phosphoinositide hydrolysis) in phorbol ester-treated cells was reduced to 67% of vehicle control, although residual specific agonist binding had been increased to greater than 300% of control. The appearance of sequestered receptors and inhibition of [3H]inositol phosphate production had similar phorbol ester concentration dependencies. These results suggest that the same agonist-occupied GnRH receptors sequestered as a result of PKC activation also are preferentially uncoupled from phosphoinositide hydrolysis.  相似文献   

8.
Osteoclasts display a membrane Ca(2+)-sensing mechanism capable of detecting the extracellular calcium concentration ([Ca2+]o), and to induce increase of [Ca2+]i and inhibition of bone resorption. The ultimate result of the stimulation of such sensing is probably the activation of protein kinase C (PKC). To demonstrate whether PKC plays a role in the control of the osteoclast activity, we treated rabbit single osteoclasts with agents known to activate or to inhibit the enzyme. We measured [Ca2+]i in single fura 2-loaded single cells and found that activation of PKC by phorbol esters doubled the [Ca2+]o-induced [Ca2+]i elevation, whereas inhibition of the enzyme by H7, staurosporine or sphingosine, completely blocked the ability of the cell to respond to elevated [Ca2+]i. By contrast, a control inactive agent, 4Aphorbol, failed to modify the cellular response to elevated [Ca2+]o. We conclude that PKC plays a synergistic role in the regulation of osteoclast Ca(2+)-sensing. Since we have previously demonstrated that activation of PKA up-regulates the Ca(2+)-sensing as well, we hypothesize that such mechanism is positively fed-back by both PKA and PKC-dependent threonine/serine phosphorylations.  相似文献   

9.
Temporal changes in intracellular Ca2+ concentration, [Ca2+]i, of resting human peripheral blood NK cells in response to target cell binding were evaluated by flow cytometry. [Ca2+]i was significantly elevated in PBL and purified NK cells bound to NK-sensitive K562 and HSB2 target cells, but not in those bound to NK-resistant MD1 B-lymphoblastoid cells. Thus, a) the ability of a target cell to elicit a Ca2+ flux response correlated with its sensitivity to lysis of NK cells, and b) adhesion alone was not a sufficient stimulus for response induction. Conjugates of NK cells bound to K562 target cells were sorted onto agarose-coated slides on the basis of relative NK cell [Ca2+]i and evaluated in 19-hr single cell agarose cytotoxicity assays. In contrast to those with basal levels of [Ca2+]i, NK cells with elevated [Ca2+]i bound more strongly to target cells, as judged by the stability of conjugates to sort-related shear forces (p less than 0.01), and more frequently killed the target cell to which they were attached (p less than 0.05). Temporal fluctuations in [Ca2+]i were observed in target-bound NK cells in both the presence and absence of extracellular Ca2+. Thus, influx of extracellular Ca2+ and release of Ca2+ from internal stores both appeared to contribute to the NK cell Ca2+ flux response triggered by adhesion to appropriate target cells. These results support the hypothesis that such fluctuations in NK cell [Ca2+]i constitute an early signal flagging the occurrence of NK cell recognition.  相似文献   

10.
Effects of protein kinase C (PKC) activation on the insulin-secretory process were investigated, by using beta-cell-rich suspensions obtained from pancreatic islets of obese-hyperglycaemic mice. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), which is known to activate PKC directly, the muscarinic-receptor agonist carbamoylcholine and high glucose concentration enhanced the phosphorylation of a specific 80 kDa PKC substrate in the beta-cells. At a non-stimulatory glucose concentration, 10 nM-TPA increased insulin release, although there were no changes in either the cytoplasmic free Ca2+ concentration ([Ca2+]i) or membrane potential, as measured with the fluorescent indicators quin-2 and bisoxonol respectively. At a stimulatory glucose concentration TPA caused a lowering in [Ca2+]i, whereas membrane potential was unaffected. Despite the decrease in [Ca2+]i, there was a large stimulation of insulin release. Addition of TPA lowered [Ca2+]i also in beta-cells stimulated by tolbutamide or high K+, although to a lesser extent than in those stimulated by glucose. There was no effect of TPA on either Ca2+ buffering or the ability of Ins(1,4,5)P3 to release Ca2+ in permeabilized beta-cells. However, the phorbol ester inhibited the rise in [Ca2+]i in response to carbamoylcholine, which stimulates the formation of InsP3, in intact beta-cells. Down-regulation of PKC influenced neither glucose-induced insulin release nor the increase in [Ca2+]i. Hence, although PKC activation is of no major importance in glucose-stimulated insulin release, this enzyme can serve as a modulator of the glucose-induced insulin-secretory response. Such a modulation involves mechanisms promoting both amplification of the secretory response and lowering of [Ca2+]i.  相似文献   

11.
In this paper, we demonstrate that low concentrations (0.5-2.5 microM) of 1,2-sn-dioctanoylglycerol (DiC8), a potent diacylglycerol used in many previous studies to probe the role of protein kinase C (PKC) in cell activation, cause cytosolic alkalinization of human, mouse and pig T lymphocytes through PKC-mediated activation of the Na+/H+ antiport. However, at higher concentrations (greater than or equal to 12.5 microM), the effect on cytosolic pH (pHi) is reversed, resulting in a marked cytosolic acidification, followed by a gradual return of pHi to baseline values. DiC8 also induces marked changes in cytosolic free calcium concentrations ([Ca2+]i), initially by releasing calcium from intracellular stores, followed by a net transmembrane influx of calcium. The DiC8-induced cytosolic acidification, the resultant return to baseline pH and the increase in [Ca2+]i are independent of activation of PKC. Unlike many other agents which increase [Ca2+]i, DiC8 does not induce phosphatidylinositol hydrolysis with the resultant production of inositol phosphates. Other compounds known to activate PKC, including the closely related diacylglycerol analogues, 1,2-sn-dihexanoylglycerol and 1,2-sn-didecanoylglycerol, phorbol esters and mezerein, did not induce changes in [Ca2+]i or cytosolic acidification in T lymphocytes. Thus the action of DiC8 on intact lymphocytes is different from that of phorbol esters and other diacylglycerols, and is specific to the length of the acyl chains. Because changes in [Ca2+]i are often associated with cell proliferation and cell differentiation, some effects of DiC8 on intact cells may be a consequence of changes in [Ca2+]i.  相似文献   

12.
Mice homozygous for the lpr gene develop a lymphoproliferative disorder due to expansion of a subset of CD4-CD8- T cells. Triggering of the T-cell receptor in these lpr T cells does not lead to translocation of protein kinase C or phosphorylation of CD3, interleukin-2 production, or proliferation, whereas a combination of phorbol ester and calcium ionophore does. Stimulation with concanavalin A or anti-CD3 induces phosphoinositide hydrolysis. The rise in inositol bisphosphate, inositol triphosphate, and inositol tetrakisphosphate, identified by HPLC, is similar in +/+ and lpr T cells. The concentration of cytoplasmic free calcium ([Ca2+]i), however, under basal and stimulated conditions is significantly lower in lpr T cells. The lower basal [Ca2+]i may explain why induction of proliferation with phorbol ester and calcium ionophore requires a higher concentration of ionophore in these cells than in normal T cells. The lower [Ca2+]i obtained on stimulation may contribute to the activation defect of CD4-CD8- lpr T cells.  相似文献   

13.
In order to examine the role of phosphatidylinositol bisphosphate (PIP2) hydrolysis in B cell activation, we studied the effect of various classes of protein kinase C (PKC) activators on anti-Ig-mediated B cell stimulation. Anti-Ig-stimulated PIP2 hydrolysis, elevations in [Ca2+]i, and induction of DNA synthesis were inhibited by PMA (a phorbol ester) as previously reported. In contrast, indolactam (an alkaloid PKC activator) inhibited PIP2 hydrolysis and elevations in [Ca2+]i, but stimulated rather than inhibited cellular proliferation. In order to examine whether the binding avidity of the PKC activators to PKC played a role in determining their activity to stimulate or inhibit B cell activation, we studied two other PKC activators, bryostatin and mezerein. Again, both inhibited anti-Ig mediated PIP2 hydrolysis and elevations in [Ca2+]i, whereas only the former inhibited induction of DNA synthesis. These data suggest that a) high levels of PIP2 hydrolysis and elevations in [Ca2+]i are not essential for anti-Ig-mediated induction of B cell DNA synthesis and b) activation of PKC may induce both stimulatory and inhibitory pathways of B cell activation, and whether stimulation or inhibition of cell activation is observed may depend on the combined intensity of these two signals.  相似文献   

14.
15.
The interaction of an Ag ligand with its B cell surface Ig (sIg) receptor can occur via an FcR-dependent or -independent pathway. We previously found that transfected TNP-specific B cells undergo both Ca2+ signaling and desensitization upon interaction with the thymus-dependent Ag TNP-OVA. Similarly, we showed that these B cells can also be desensitized by cross-linking sIg to the Fc gamma R via the formation of an Ag-antibody bridge. Thus, Ag-specific B cells can be desensitized by two different Ag-dependent events, one mediated by Ag-sIg interaction and the other by sIg-Fc gamma R cross-linking. Inasmuch as Ag-sIg and sIg-Fc gamma R interactions lead to positive and negative signaling, it was of interest to determine whether B cell desensitization mediated by these interactions occurs by one of the well known signaling pathways in B cells. We found that Ag-induced changes in [Ca2+]i could be readily dissociated from Ag-induced desensitization, indicating that a Ca(2+)-independent pathway is likely responsible for this pathway of desensitization. To determine if PKC plays a role in B cell desensitization mediated by either Ag or sIg-Fc gamma R interaction, PKC was downregulated by long term exposure to 12-O-tetradecanoylphorbol 13-acetate or inhibited by exposure of cells to staurosporine. The PKC down-regulated and inhibited cells underwent similar Ag- and Fc gamma R-dependent desensitization compared to cells containing active PKC. Taken together, these data indicate that Ag-induced desensitization of B cell signaling likely involves an event(s) that occurs either upstream or independent of Ag-induced elevations in [Ca2+]i and PKC activation.  相似文献   

16.
The hypothesis that acetylcholine, substance P, and LHRH suppress M-current by activating phospholipase C was tested. Each agonist caused turnover of phosphoinositide, as measured by release of inositol phosphates, and a modest transient rise in intracellular free Ca2+ ([ Ca2+]i), as determined with fura-2. Active phorbol esters depressed M-current only 50% and did not prevent further suppression by LHRH. M-current, its control by agonists, and its depression by phorbol esters were not affected by adding inositol trisphosphate or Ca2+ buffers with high or low Ca2+ to the whole-cell, voltage-clamp pipette. We conclude that phospholipase C activation does occur but does not mediate the suppression of M-current by agonists. Caffeine produced large [Ca2+]i transients and acted as an agonist to suppress M-current.  相似文献   

17.
18.
Stimulation of NK cell-mediated cytotoxicity involves the coupling of proximal Src and Syk family protein tyrosine kinases to downstream effectors. However, the mechanisms linking these second messenger pathways are incompletely understood. Here, we describe a key role for the LAT (p36) adaptor protein in human NK cell activation. LAT is tyrosine phosphorylated upon stimulation of NK cells through FcgammaRIII receptors and following direct contact with NK-sensitive target cells. This NK stimulation induces the association of LAT with several phosphotyrosine-containing proteins. In addition to the biochemical evidence showing LAT involvement in NK cell activation, a genetic model shows that LAT is required for FcR-dependent phosphorylation of phospholipase C-gamma. Furthermore, overexpression of LAT in NK cells leads to increased Ab-dependent cell-mediated cytotoxicity and "natural cytotoxicity," thus demonstrating a functional role for LAT in NK cells. These data suggest that LAT is an important adaptor protein for the regulation of human NK cell-mediated cytotoxicity.  相似文献   

19.
Phorbol esters were used to investigate the action of protein kinase C (PKC) on insulin secretion from pancreatic beta-cells. Application of 80 nM phorbol 12-myristate 13-acetate (PMA), a PKC-activating phorbol ester, had little effect on glucose (15 mM)-induced insulin secretion from intact rat islets. In islets treated with bisindolylmaleimide (BIM), a PKC inhibitor, PMA significantly reduced the glucose-induced insulin secretion. PMA decreased the level of intracellular Ca(2+) concentration ([Ca(2+)](i)) elevated by the glucose stimulation when tested in isolated rat beta-cells. This inhibitory effect of PMA was not prevented by BIM. PMA inhibited glucose-induced action potentials, and this effect was not prevented by BIM. Further, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, produced an effect similar to PMA. In the presence of nifedipine, the glucose stimulation produced only depolarization, and PMA applied on top of glucose repolarized the cell. When applied at the resting state, PMA hyperpolarized beta-cells with an increase in the membrane conductance. Recorded under the voltage-clamp condition, PMA reduced the magnitude of Ca(2+) currents through L-type Ca(2+) channels. BIM prevented the PMA inhibition of the Ca(2+) currents. These results suggest that activation of PKC maintains glucose-stimulated insulin secretion in pancreatic beta-cells, defeating its own inhibition of the Ca(2+) influx through L-type Ca(2+) channels. PKC-independent inhibition of electrical excitability by phorbol esters was also demonstrated.  相似文献   

20.
The binding of natural killer (NK) cells to either susceptible tumor cells or antibody-coated targets results in rapid activation of phospholipase C (PLC) in NK cells. PLC activation generates inositol-1,4,5-trisphosphate and sn-1,2-diacylglycerol as second messengers, which, in turn, increase intracellular free calcium concentrations ([Ca2+]i) and protein kinase C (PKC) activity, respectively. These proximal signals initiate a cascade of as yet undefined biochemical events, leading eventually to the exocytosis of preformed cytotoxic granules. To investigate the signal transduction pathways involved in granule exocytosis, we utilized streptolysin-O-permeabilized human NK cells as our experimental model. Our initial studies indicated that the separate activation of either PKC (using the phorbol ester, PMA) or G protein-dependent pathways (using guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S)) stimulated granule exocytosis in a time-, concentration-, and Ca(2+)-dependent manner. PMA-stimulated exocytosis was inhibited by staurosporine or a PKC pseudosubstrate antagonist peptide, but was not affected by GDP. In contrast, GTP gamma S-stimulated exocytosis was effectively inhibited by GDP, but not by staurosporine or the PKC pseudosubstrate antagonist. These observations suggest that NK cell exocytosis can be stimulated by at least two separate pathways; one involving PKC and the other involving a G protein. However, co-stimulation with PMA and GTP gamma S synergistically enhanced exocytosis, suggesting that even though the two exocytotic pathways were biochemically distinct, cross-talk between the two pathways may potently influence the exocytotic process. These results define a regulatory role for PKC- and G protein-dependent pathways during granule exocytosis from NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号