首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A 318 bp mannopine synthase 2 (mas2) promoter element from the T-DNA of Agrobacterium tumefaciens can direct wound-inducible and root-preferential expression of a linked uidA gene in transgenic tobacco plants. Wound inducibility is further enhanced by sucrose in the medium. Promoter deletion analysis indicated that the sucrose enhancement is conferred by a region extending from –318 to –213. DNase I footprinting indicated that an A/T-rich DNA sequence in this region is protected by tobacco nuclear factors. Regions extending from –103 to +66 and from –213 to –138 directed wound-inducibile expression of a linked uidA gene when placed downstream of a CaMV 35S enhancer or upstream of a truncated (–209) CaMV 35S promoter, respectively. DNase I footprinting analyses indicated that proteins from wounded tobacco leaves specifically bound to three contiguous motifs downstream of the mas2 TATA box. In addition to a common retarded band formed by the upstream wound-responsive element complexed with proteins from either wounded or unwounded tobacco leaves, two unique retarded bands were observed when this element was incubated with protein from wounded leaves. Methylation interference analysis additionally identified an unique motif composed of promoter elements and nuclear factors derived specifically from wounded tobacco leaves. We propose a model to describe the involvement of nuclear factors with mas2 promoter elements in wound-inducible gene expression.  相似文献   

2.
The expression of chloramphenical acetyl transferase (CAT) protein driven by the wound-inducible promoter from the proteinase inhibitor II K (pin2) gene was examined in whole tobacco (Nicotiana tabacum L.) plants under field conditions. Mechanical wounding of the field-grown leaves caused an accumulation of CAT protein in these leaves which begins several hours after wounding and continues to accumulate for about 36 hours. When sections of leaves were assayed for accumulation of CAT protein following wounding, the CAT protein was found to accumulate in the apical portions of the leaves. When endogenous insects attacked the leaves of transgenic plants grown in the field, the plants responded by inducing CAT protein. The mesophyll cells of the leaf were the site of expression of the CAT protein rather than the mid-vein or major veins within the leaf blade, indicating that the wound-inducible pin2 promoter specifically directs the synthesis of novel genes in tissues preferentially consumed by larval insects.  相似文献   

3.
4.
5.
The maizerab17 gene is expressed in different plant parts in response to ABA and osmotic stress (J. Vilardellet al., Plant Mol Biol 14 (1990) 423–432). Here we demonstrate that 5 upstream sequences of therab17 gene confer the appropriate patterns of expression on the chloramphenicol acetyl transferase (CAT) reporter gene in transgenic tobacco plants, as well as in protoplasts derived from cultured rice cells. Specifically, a CAT construct containing a large 5 upstream fragment ofrab17 (–1330/+29) results in high levels of CAT activity in embryos, leaves and roots of transgenic plants subjected to water stress or ABA treatment. Transient expression assays in rice protoplasts transfected with CAT genes fused torab17 promoter deletions indicate that a 300 bp DNA fragment (–351/–102) is sufficient to confer ABA responsiveness upon the reporter gene. Furthermore, a 100 bp sequence (–219/–102) is capable of conferring ABA responsiveness upon a minimal promoter derived from the 35S CaMV promoter. Gel retardation experiments indicate that maize nuclear proteins bind to this fragment. This region of 100 bp contains a sequence (ACGTGGC) which has been identified as an abscisic acid response element in studies of other ABA-responsive plant genes.  相似文献   

6.
7.
The effects of promoter on transient expression in conifer cell lines   总被引:3,自引:0,他引:3  
Summary Protoplasts from suspension cultures of somatic embryos of white spruce (Picea glauca Moench Voss) were electroporated with plasmids containing the chimeric genes for chloramphenicol acetyl transferase (CAT) or -glucuronidase (GUS), under control of one of three promoters. Transient CAT gene expression of approximately equal magnitude resulted when the CAT gene was fused to either the cauliflower mosaic virus (CaMV) 35S promoter or the nopaline synthase (NOS) promoter. When the CAT gene was fused to a tandem repeat CaMV 35S promoter (pPBI-363), CAT enzyme activity compared to NOS or 35S promoters increased up to eightfold (cell line WS-34), and were up to 100-fold greater than control (electroporated without plasmid). Comparatively, protoplasts of black spruce (Picea mariana Mill) and jack pine (Pinus banksiana Lamb.), electroporated with pPBI-363, produced increases in CAT activity compared to control of 90-fold and 70-fold, respectively. White spruce (WS-34) protoplasts were subsequently electroporated with the GUS gene fused to the tandem repeat CaMV 35S promoter. Comparatively, GUS enzyme activity increased up to tenfold compared to GUS fused to a CaMV 35S promoter. The results indicated that transient expression of the CAT and GUS genes was influenced by the type of promoter and cell line used, as well as by electroporation conditions.NRCC No. 30498  相似文献   

8.
A chimeric gene consisting of 1.3 kb of the 5' regulatory region of a member of the potato proteinase inhibitor II gene family, the coding region of the bacterial β-glucuronidase (GUS) gene and 260 bp of the proteinase inhibitor II 3'-untranslated region containing the poly(A) addition site was introduced into potato and tobacco by Agrobacterium tumefaciens mediated transformation. Analysis of transgenic plants demonstrates systemic, wound-inducible expression of this gene in stem and leaves of potato and tobacco. Constitutive expression was found in stolons and tubers of non-wounded potato plants. Histochemical experiments based on the enzymatic activity of the GUS protein indicate an association of the proteinase inhibitor II promoter activity with vascular tissue in wounded as well as in systemically induced non-wounded leaves, petioles, potato stems and in developing tubers. These data prove that one single member of the proteinase inhibitor II gene family contains cis-active elements, which are able to respond to both developmental and environmental signals. Furthermore they support the hypothesis of an inducing signal (previously called proteinase inhibitor inducing factor), which is released at the wound site and subsequently transported to non-wounded parts of the plant via the vascular system from where it is released to the surrounding tissue.  相似文献   

9.
Nitric oxide negatively modulates wound signaling in tomato plants   总被引:24,自引:0,他引:24  
Synthesis of proteinase inhibitor I protein in response to wounding in leaves of excised tomato (Lycopersicon esculentum) plants was inhibited by NO donors sodium nitroprusside and S-nitroso-N-acetyl-penicillamine. The inhibition was reversed by supplying the plants with the NO scavenger 2-(4-carboxiphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. NO also blocked the hydrogen peroxide (H(2)O(2)) production and proteinase inhibitor synthesis that was induced by systemin, oligouronides, and jasmonic acid (JA). However, H(2)O(2) generated by glucose oxidase and glucose was not blocked by NO, nor was H(2)O(2)-induced proteinase inhibitor synthesis. Although the expression of proteinase inhibitor genes in response to JA was inhibited by NO, the expression of wound signaling-associated genes was not. The inhibition of wound-inducible H(2)O(2) generation and proteinase inhibitor gene expression by NO was not due to an increase in salicylic acid, which is known to inhibit the octadecanoid pathway. Instead, NO appears to be interacting directly with the signaling pathway downstream from JA synthesis, upstream of H(2)O(2) synthesis. The results suggest that NO may have a role in down-regulating the expression of wound-inducible defense genes during pathogenesis.  相似文献   

10.
To address the question whether common signal(s) and transduction pathways are used to mediate a systemic wound response in monocot and dicot plants, a fusion of the potato proteinase inhibitor II gene (pin2) promoter and the bacterial -glucuronidase gene (Gus)-coding region was introduced into rice. In transgenic rice plants, the expression of the pin2-Gus fusion gene displays a systemic wound response, although the expression level is relatively low. Incorporation of the first intron from the rice actin 1 gene (Act1) into the 5-untranslated region of the pin2-Gus construct results in high-level, systemically wound-inducible expression of the modified construct in transgenic rice plants. Histochemical analysis shows that this high-level, wound-inducible expression is associated with the vascular tissue in both leaves and roots. Furthermore, the expression of the pin2-Act1 intron-Gus fusion gene in transgenic rice plants can be systemically induced by both methyl jasmonate (MJ) and the phytohormone abscisic acid (ABA). These results suggest that the signal(s) mediating the observed systemic wound response and certain steps of the transduction pathways are conserved between dicot and monocot plants. Transient expression assays show that the pin2-Act1 intron-Gus construct is also actively expressed in transformed cells and tissues of several other monocot plants. Thus, the wound-inducible pin2 promoter in combination with the rice Act1 intron 1 might be used as an efficient regulator for foreign gene expression in transgenic monocot plants.  相似文献   

11.
12.
13.
The reporter genes for Chloramphenicolacetyltransferase (CAT), Neomycinphosphotransferase-(NPT)-II and -Glucuronidase (GUS) were compared in transient gene expression experiments in tobacco mesophyll protoplasts. For this purpose, nearly identical chimeric genes controlled by the CaMV 35 S promoter were constructed. The detection level of each system was determined yielding the following order of relative sensitivity: CAT相似文献   

14.
15.
Zhong H  Sun B  Warkentin D  Zhang S  Wu R  Wu T  Sticklen MB 《Plant physiology》1996,111(4):1097-1107
We have developed a novel and reproducible system for recovery of fertile transgenic maize (Zea mays L.) plants. The transformation was performed using microprojectile bombardment of cultured shoot apices of maize with a plasmid carrying two linked genes, the Streptomyces hygroscopicus phosphinothricin acetyltransferase gene (bar) and the potato proteinase inhibitor II gene, either alone or in combination with another plasmid containing the 5[prime] region of the rice actin 1 gene fused to the Escherichia coli [beta]-glucuronidase gene (gus). Bombarded shoot apices were subsequently multiplied and selected under 3 to 5 mg/L glufosinate ammonium. Co-transformation frequency was 100% (146/146) for linked genes and 80% (41/51) for unlinked genes. Co-expression frequency of the bar and gus genes was 57% (29/51). The co-integration, co-inheritance, and co-expression of bar, the potato proteinase inhibitor II gene, and gus in transgenic R0, R1, and R2 plants were confirmed. Localized expression of the actin 1-GUS protein in the R0 and R1 plants was extensively analyzed by histochemical and fluorometric assays.  相似文献   

16.
17.
18.
Summary Two cDNA clones containing the complete coding region of a developmentally controlled (tuber-specific) as well as environmentally inducible (wound-inducible) gene from potato (Solanum tuberosum) have been sequenced. The open reading frame codes for 154 amino acids. Its sequence is highly homologous to the proteinase inhibitor II from tomato, indicating that the cDNA's encode the corresponding proteinase inhibitor II of potato. In addition the putative potato proteinase inhibitor II contains a sequence which is completely homologous with that of another small peptide proteinase inhibitor from potato, called PCI-I. Evidence is presented that this small peptide is probably derived from the proteinase inhibitor II by posttranslational processing.Northern type experiments using RNA from wounded and nonwounded leaves demonstrate that RNA homologous to the putative proteinase inhibitor II cDNA's accumulates in leaves as a consequence of wounding, whereas normally the expression of this gene is under strict developmental control, since it is detected only in tubers of potato (Rosahl et al. 1986). In addition the induction of this gene in leaves can also be achieved by the addition of different polysaccharides such as poly galacturonic acid or chitosan. In contrast to the induction of its expression by wounding in leaves, wounding of tubers results in a disappearance of the proteinase II inhibitor m-RNA from these organs.  相似文献   

19.
20.
The early events of transient gene expression have been investigated monitoring CAT activity in tobacco protoplasts encoded by the recombinant plasmid pRT101cat. The first appearance of CAT activity was observed within 30 minutes after the outset of cultivation, and maximal values were obtained between four and 24 hours. CAT expression, at the level of RNA synthesis, could not be inhibited by cordycepin (3deoxyadenine) added one hour after protoplast plating, whereas cycloheximide, an inhibitor of protein synthesis, showed an influence during the first four hours. This indicates a rapid decay of biologically active forms of both the DNA transferred and the CAT-mRNA synthesized within the first hours. These results suggest that in the tobacco protoplast system CAT protein stability lasts up to two weeks rather than a continuous synthesis of new enzyme.Abbreviations BAP Benzylaminopurin - CaMV Cauliflower Mosaic Virus - CAT Chloramphenicolacetyltransferase - PEG Polyethylenglycol - NAA Naphtylaceticacid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号