首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
金属结合蛋白(肽)与环境重金属生物修复   总被引:8,自引:0,他引:8  
重金属污染是全球关注的重要环境问题。针对重金属的生物修复技术 ,因其特有的优势 ,越来越受到重视 ,其中一个重要的研究领域是利用金属离子和金属结合蛋白或结合肽之间存在的强亲和能力特性进行的生物修复研究。就金属结合蛋白 (肽 )的种类、结构特点、以及金属结合的作用机理进行了总结 ,同时综述了展示或表达有不同金属结合蛋白或结合肽的微生物和植物对重金属污染进行生物修复的最新研究进展 ,对基于金属结合蛋白 (肽 )的环境重金属生物修复的进一步研究 (如肽库的构建和筛选 ,金属与蛋白 (肽 )的相互作用 )进行了讨论。  相似文献   

2.
利用噬菌体随机十二肽库和金属亲和层析对重金属Ni2+进行结合肽筛选。经4轮生物淘洗、噬菌体扩增和DNA测序,获得一组多肽序列。GenBank Blast分析未发现同源序列,Clustal W多重序列比对也未找到Ni2+金属结合肽结合基序,但可能含有多聚组氨酸(His)2-5。噬菌体单克隆金属离子螯合树脂的亲和力测定和反筛、抑菌解毒试验表明:展示有金属结合肽的噬菌体不仅对Ni2+具有高亲和力,而且对其它金属离子也有作用,Cu2+、Ni2+、Co2+、Zn2+等金属离子对金属结合肽的亲和力显著高于Cd2+和Cr2+,展示金属结合肽的噬菌体对重金属Ni2+具有一定的耐受和解毒作用。显微形态学观察也显示金属结合肽与金属螯合树脂的作用。对于了解重金属与多肽的相互作用机理以及环境重金属修复等均具有重要意义和价值。  相似文献   

3.
Ni2+高效结合肽的筛选与作用研究   总被引:3,自引:0,他引:3  
利用噬菌体随机十二肽库和金属亲和层析对重金属Ni2 进行结合肽筛选。经4轮生物淘洗、噬菌体扩增和DNA测序,获得一组多肽序列。GenBank Blast分析未发现同源序列,Clustal W多重序列比对也未找到Ni2 金属结合肽结合基序,但可能含有多聚组氨酸(His)2-5。噬菌体单克隆金属离子螯合树脂的亲和力测定和反筛、抑菌解毒试验表明:展示有金属结合肽的噬菌体不仅对Ni2 具有高亲和力,而且对其它金属离子也有作用,Cu2 、Ni2 、Co2 、Zn2 等金属离子对金属结合肽的亲和力显著高于Cd2 和Cr2 ,展示金属结合肽的噬菌体对重金属Ni2 具有一定的耐受和解毒作用。显微形态学观察也显示金属结合肽与金属螯合树脂的作用。对于了解重金属与多肽的相互作用机理以及环境重金属修复等均具有重要意义和价值。  相似文献   

4.
植物金属硫蛋白(metallothioneins, MT)被认为在植物应答重金属胁迫方面发挥了重要作用,但该基因的转录调控机制目前仍不清楚.我们以前的研究初步鉴定出位于-331/-194的水稻MT基因(ricMT)启动子区对于金属激活ricMT的表达是必需的.为了明确 -331/-194启动子序列在控制ricMT表达中的作用,本课题开展了该序列 与核因子的结合特性研究.从2周龄水稻嫩叶中提取了几乎不含叶绿体污染的细胞核,并制备 了核蛋白用于凝胶阻滞实验,发现核因子能够与-331/-194启动子序列特异 结合.本研究还进一步考察了重金属对核因子结合活性的影响,发现在结合体系中去除重金 属离子,核因子与-331/-194序列的结合能力会丧失,而在结合体系中加入重金属离子, 结合能力则会随着外加的离子浓度提高而增强,证明这种结合确实依赖于重金属.这些证据 结合以前的结果表明,某些金属响应的核因子可能通过结合-331/-194启动子区域来调控 ricMT基因表达.  相似文献   

5.
金属硫蛋白是一类普遍存在于生物体内、富含半胱氨酸的小分子蛋白,能螯合多种金属离子。本研究根据EST序列信息,利用RACE技术克隆到1条家蝇Musca domestica金属硫蛋白基因MdMtn(GenBank登录号为GU289398)。序列分析表明,MdMtn cDNA全长408 bp,包含1个123 bp的开放阅读框,编码40个氨基酸残基,其中半胱氨酸残基10个,呈-C-X-C-方式排列。此蛋白理论分子量为3.8 kD,等电点为878。为了解家蝇金属硫蛋白对重金属的结合活性,构建了pET-DsbA-MT表达载体,并转化Escherichia coli BL21(DE3)宿主菌进行融合表达。研究发现MT重组菌对重金属镉的耐受性得到了明显加强,提示MdMtn基因可能在家蝇适应重金属环境中起到积极作用。  相似文献   

6.
二价铅离子与金属硫蛋白相互作用的研究   总被引:5,自引:0,他引:5  
通过紫外吸收光谱和平衡透析法研究了二价铅离子同脱金属硫蛋白(apo-MT)、锌-金属硫蛋白(Zn-MT)的相互作用,证实Pb(Ⅱ)是以金属巯基复合物(金属巯基比为1∶2)的形式同金属硫蛋白结合,表观离解常数(KD)为8.71×10-7mol/L.在自由铅浓度达到6.52×10-6mol/L的条件下,铅离子即可将Zn-MT上的Zn完全取代下来.通过EDTA、DTNB竞争反应、圆二色性(CD)光谱分析,认为Pb-MT的金属巯基复合物不同于Zn-MT中Zn与巯基形成的紧密的正四面体结构,而是可能形成一种三级结构相对松散、热力学上不稳定的Cys-S-Pb-S-Cys平面形结构.研究认为金属硫蛋白的两种亚型MT-Ⅰ、MT-Ⅱ与Pb(Ⅱ)的结合能力并无显著差异  相似文献   

7.
本文为真核微生物MT45篇文献综述,在酵母菌和真菌中,细胞对重金属毒害的抗性或者以结合金属离子的蛋白质─-MT形式调控,或者通过合金属离子的整合肽(γ-Gln-Cys)uGly类型调控。本综述包括酵母菌MT序列、金属结合特性;MTs及PCs结构和功能,以及MT基因、基因放大、基因调控;最后,我们叙述了酵母菌MT在制药、金属回收和MT启动子在生物工程中的应用。  相似文献   

8.
厚藤(Ipomoea pes-caprae(L.) Sweet)是一种具有重要生态、观赏及药用价值的沙滩植物,对重金属镉(Cd)具有一定的富集能力,可作为Cd污染滨海地区的修复植物进行引种栽植和利用。本研究通过Gateway技术构建厚藤的cDNA文库,将该文库质粒转化酵母对Cd敏感的突变株ycf1△,采用全长cDNA过表达基因捕获系统(FOX)筛选厚藤重金属Cd胁迫耐受相关基因,并采用酵母互补实验进行基因的功能验证。本研究获得了2个能够恢复ycf1△对Cd敏感表型的重组质粒,经测序分析,该重组质粒包含的cDNA全长序列分别对应厚藤植物螯合肽合成酶基因(phytochelatin synthase)和金属硫蛋白基因(metallothionein),分别将其命名为IpPCS和IpMT,通过功能分析,初步认定该基因为编码Cd耐受和解毒相关蛋白的候选基因。  相似文献   

9.
副粘病毒F蛋白的两段七肽重复序列(HR1和HR2)在病毒侵染细胞的过程中相互作用形成热稳定的富含α螺旋的异源二聚体,此结构的形成引起病毒囊膜与细胞膜的并置而最终导致膜融合的发生。腮腺炎病毒(Mumps virus, MuV)属于副粘病毒科,腮腺炎病毒属,可能利用与其他副粘病毒相似的侵染机制。本研究对MuV 融合蛋白的HR区进行了计算机程序预测,并利用大肠杆菌GST融合表达系统对MuV F蛋白HR1和HR2两段多肽进行了表达和纯化,通过GST pull_down 实验证实HR1和HR2多肽在体外能够相互作用,凝胶过滤层析证明HR1、HR2多肽能够形成多聚体,说明MuV F蛋白的HR区的相互作用可能是其发挥融合功能的关键因素。  相似文献   

10.
植物螯合肽(phytochelatins,PCs)是由植物螯合肽合酶催化谷胱甘肽合成的一类生物小分子,结构式为(γ-Glu-Cys)n-Gly(n=2-11),在真菌和高等植物耐受重金属胁迫机制中具有重要作用。近年来,人们在Pc介导重金属脱毒害的分子机理研究上取得了重要进展,发JLSpHMT1和SpABC2是PC在裂殖酵母中介导重金属液泡区室化的主要转运蛋白,鉴定了拟南芥液泡膜PC转运蛋AtABCC1和AtABCC2。此外,PCs也可能在超积累植物细胞内对重金属脱毒害具有重要功能。  相似文献   

11.
P Chakrabarti 《Biochemistry》1990,29(3):651-658
An analysis of the geometry of metal binding by peptide carbonyl groups in proteins is presented. Such metal ions are predominantly calcium in known protein structures. Cations tend to be located in the peptide plane, near the C = O bond direction. This distribution differs from that observed for water molecules bound to carbonyl oxygens. Most metal ions are bound to carbonyl oxygens of peptides in turns or in regions with no regular secondary structure. More infrequent binding interactions occur at the C-terminal end of alpha-helices or at the edges and sides of beta-sheets, where the geometrical preferences of the metal-carbonyl interaction may be satisfied. In many proteins carbonyl groups that are one, two, or three residues apart along the polypeptide chain bind to the same cation; these structures show a limited number of main-chain conformations around the metal center.  相似文献   

12.
In order to facilitate a novel means for coupling proteins to metal oxides, peptides were identified from a dodecamer peptide yeast surface display library that bound a model metal oxide material, the C, A, and R crystalline faces of synthetic sapphire (alpha-Al(2)O(3)). Seven rounds of screening yielded peptides enriched in basic amino acids compared to the naive library. While the C-face had a high background of endogenous yeast cell binding, the A- and R faces displayed clear peptide-mediated cell adhesion. Cell detachment assays showed that cell adhesion strength correlated positively with increasing basicity of expressed peptides. Cell adhesion was also shown to be sensitive to buffer ionic strength as well as incubation with soluble peptide (with half maximal inhibition of cell binding at approximately 5 microM peptide). Next, dodecamer peptides cloned into yeast showed that lysine led to stronger interactions than arginine, and that charge distribution affected adhesion strength. We postulate binding to arise from peptide geometries that permit conformation alignment of the basic amino acids towards the surface so that the charged groups can undergo local electrostatic interactions with the surface oxide. Lastly, peptide K1 (-(GK)(6)) was cloned onto the c-terminus of maltose binding protein (MBP) and the resultant mutant protein showed a half-maximal binding at approximately 10(-7)-10(-6) M, which marked a approximately 500- to 1,000-fold binding improvement to sapphire's A-face as compared with wild-type MBP. Targeting proteins to metal oxide surfaces with peptide tags may provide a facile one-step alternative coupling chemistry for the formation of protein bioassays and biosensors.  相似文献   

13.
Staphylococcal surface display of metal-binding polyhistidyl peptides   总被引:3,自引:0,他引:3  
Recombinant Staphylococcus xylosus and Staphylococcus carnosus strains were generated with surface-exposed chimeric proteins containing polyhistidyl peptides designed for binding to divalent metal ions. Surface accessibility of the chimeric surface proteins was demonstrated and the chimeric surface proteins were found to be functional in terms of metal binding, since the recombinant staphylococcal cells were shown to have gained Ni(2+)- and Cd(2+)-binding capacity, suggesting that such bacteria could find use in bioremediation of heavy metals. This is, to our knowledge, the first time that recombinant, surface-exposed metal-binding peptides have been expressed on gram-positive bacteria. Potential environmental or biosensor applications for such recombinant staphylococci as biosorbents are discussed.  相似文献   

14.
Protein-protein interactions mediate most of the processes in the living cell and control homeostasis of the organism. Impaired protein interactions may result in disease, making protein interactions important drug targets. It is thus highly important to understand these interactions at the molecular level. Protein interactions are studied using a variety of techniques ranging from cellular and biochemical assays to quantitative biophysical assays, and these may be performed either with full-length proteins, with protein domains or with peptides. Peptides serve as excellent tools to study protein interactions since peptides can be easily synthesized and allow the focusing on specific interaction sites. Peptide arrays enable the identification of the interaction sites between two proteins as well as screening for peptides that bind the target protein for therapeutic purposes. They also allow high throughput SAR studies. For identification of binding sites, a typical peptide array usually contains partly overlapping 10-20 residues peptides derived from the full sequences of one or more partner proteins of the desired target protein. Screening the array for binding the target protein reveals the binding peptides, corresponding to the binding sites in the partner proteins, in an easy and fast method using only small amount of protein.In this article we describe a protocol for screening peptide arrays for mapping the interaction sites between a target protein and its partners. The peptide array is designed based on the sequences of the partner proteins taking into account their secondary structures. The arrays used in this protocol were Celluspots arrays prepared by INTAVIS Bioanalytical Instruments. The array is blocked to prevent unspecific binding and then incubated with the studied protein. Detection using an antibody reveals the binding peptides corresponding to the specific interaction sites between the proteins.  相似文献   

15.
Ghosh D  Lee KH  Demeler B  Pecoraro VL 《Biochemistry》2005,44(31):10732-10740
Investigators have studied how proteins enforce nonstandard geometries on metal centers to assess the question of how protein structures can define the coordination geometry and binding affinity of an active-site metal cofactor. We have shown that cysteine-substituted versions of the TRI peptide series [AcG-(LKALEEK)(4)G-NH(2)] bind Hg(II) and Cd(II) in geometries that are different from what is normally found with thiol ligands in aqueous solution. A fundamental question has been whether this structural perturbation is due to protein influence or a change in the metal geometry preference. To address this question, we have completed linear free-energy analyses that correlate the association of three-stranded coiled coils in the absence of a metal with the binding affinity of the peptides to the heavy metals, Hg(II) and Cd(II). In this paper, six new members of this family have been synthesized, replacing core leucine residues with smaller and less hydrophobic residues, consequently leading to varying degrees of self-association affinities. At the same time, studies with some smaller and longer sequenced peptides have also been examined. All of these peptides are seen to sequester Hg(II) and Cd(II) in an uncommon trigonal environment. For both metals, the binding is strong with micromolar dissociation constants. For binding of Hg(II) to the peptides, the dissociation constants range from 2.4 x 10(-)(5) M for Baby L12C to 2.5 x 10(-)(9) M for Grand L9C for binding of the third thiolate to a linear Hg(II)(pep)(2) species. The binding of Hg(II) to the peptide Grand L9C is similar in energetics for metal binding in the metalloregulatory protein, mercury responsive (merR), displaying approximately 50% trigonal Hg(II) formation at nanomolar metal concentrations. Approximately, 11 kcal/mol of the Hg(II)(Grand L9C)(3)(-) stability is due to peptide interactions, whereas only 1-4 kcal/mol stabilization results from Hg(II)(RS)(2) binding the third thiolate ligand. This further validates the hypothesis that the favorable tertiary interactions in protein systems such as merR go a long way in stabilizing nonnatural coordination environments in biological systems. Similarly, for the binding of Cd(II) to the TRI family, the dissociation constants range from 1.3 x 10(-)(6) M for Baby L9C to 8.3 x 10(-)(9) M for TRI L9C, showing a similar nature of stable aggregate formation.  相似文献   

16.
17.
Lim KH  Kim YK  Chang YT 《Biochemistry》2007,46(47):13523-13532
Transition-metal ions (Cu2+ and Zn2+) play critical roles in the Abeta plaque formation. However, precise roles of the metal ions in the Abeta amyloidogenesis have been controversial. In this study, the molecular mechanism of the metal-induced Abeta oligomerization was investigated with extensive metal ion titration NMR experiments. Upon additions of the metal ions, the N-terminal region (1-16) of the Abeta (1-40) peptide was selectively perturbed. In particular, polar residues 4-8 and 13-15 were more strongly affected by the metal ions, suggesting that those regions may be the major binding sites of the metal ions. The NMR signal changes of the N-terminal region were dependent on the peptide concentrations (higher peptide concentrations resulted in stronger signal changes), suggesting that the metal ions facilitate the intermolecular contact between the Abeta peptides. The Abeta (1-40) peptides (>30 microM) were eventually oligomerized even at low temperature (3 degrees C), where the Abeta peptides are stable as monomeric forms without the metal ions. The real-time oligomerization process was monitored by 1H/15N HSQC NMR experiments, which provided the first residue-specific structural transition information. Hydrophobic residues 12-21 initially underwent conformational changes due to the intermolecular interactions. After the initial structural rearrangements, the C-terminal residues (32-40) readjusted their conformations presumably for effective oligomerization. Similar structural changes of the metal-free Abeta (1-40) peptides were also observed in the presence of the preformed oligomers, suggesting that the conformational transitions may be the general molecular mechanism of the Abeta (1-40) amyloidogenesis.  相似文献   

18.
Two 57-residue peptides containing one pair of "zinc fingers" from a human enhancer binding protein were prepared by solid-phase peptide synthesis. One peptide (MBP-DF) contained the native sequence, while the second peptide ([Abu11]MBP-DF) has an alpha-aminobutyric acid residue substituted for a nonconserved cysteine residue at position 11. The peptides were characterized by several chemical and physical methods, and their DNA binding properties were evaluated using gel retardation experiments. Spectroscopic studies demonstrated that addition of metal ions such as zinc and cobalt resulted in specific conformational changes in both peptides, indicating that cysteine-11 does not appear to be involved in metal chelation. One-dimensional 1H NMR studies indicate that a stable folded structure is formed upon addition of zinc, and the chemical shift pattern is consistent with that previously observed for one constituent single finger (Omichinski, J., Clore, G. M., Appella, E., Sakaguchi, K., and Gronenborn, A. M. (1990) Biochemistry 29, 9324-9334). Gel retardation experiments demonstrate that the peptides are capable of interacting with a 15-mer oligonucleotide comprising a portion of the major histocompatibility complex enhancer sequence and that the interaction is zinc-dependent. The dissociation constant for the [Abu11]MBP-DF peptide is 1.4 x 10(-7) M with maximal binding occurring at a zinc-to-peptide ratio of 2 to 1. The binding specificity observed with respect to related enhancer sequences exhibits the same relative order as noted previously for the whole protein. Studies with point mutants of the major histocompatibility complex enhancer binding sequence indicate that the last GC base pair in a four-guanine stretch plays a pivotal role in the interaction between the peptide and DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号