首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Knowledge of foraging movements during the breeding season is key to understanding energetic stresses faced by seabirds. Using archival light loggers (geolocators), a Bayesian state–space model, and stable isotope analysis, we compared foraging movements of Leach's storm‐petrels Oceanodroma leucorhoa during their incubation periods in 2012 and 2013. Data were collected from two colonies, Bon Portage Island and Country Island, which are 380 km apart along the coast of Nova Scotia, Canada. Based on allometry for procellariiform mass, predicted foraging ranges for Leach's storm‐petrels are 200 km; however, observed maximum distances from the colony were 3 to 5 times that. Storm‐petrels from Country Island travelled 1015 ± 238 km southeast to the Laurentian fan and south of the Grand Banks whereas storm‐petrels from Bon Portage Island travelled 613 ± 167 km southeast, beyond the continental slope, east of Georges Bank. The average distance travelled in a return trip was 2287 ± 603 km and 1303 ± 351 km for Country Island and Bon Portage Island, respectively. There were no differences between years in cumulative distances travelled within islands, but foraging trips did not last as long in 2013 (4.7 ± 1.5 d) as they did in 2012 (6.2 ± 2.1 d). Stable isotope analyses indicated that, during the incubation period, prey items from Country Island were from higher trophic levels and possibly had higher energy content than those from Bon Portage Island, perhaps explaining the more distant and longer foraging trips for Country Island birds.  相似文献   

2.
Habitat use and foraging behavior of two benthic insectivorous gobies, Rhinogobius sp. CO (cobalt type) and Rhinogobius sp. DA (dark type), were examined in relation to their predation effects on local prey density in a small coastal stream in southwestern Shikoku, Japan. Correlations among the foraging range, frequency of foraging attempts and current velocity indicated that individuals using fast-current habitats had small foraging ranges and infrequently made foraging attempts while those in slow currents frequently foraged over large areas. The former and the latter were recognized as ambush and wandering foragers, respectively. Interspecific comparisons of habitat use, foraging behavior and prey preference suggested that Rhinogobius sp. CO selectively forage mobile prey by ambushing in fast currents, whereas Rhinogobius sp. DA randomly forage available prey by wandering in slow-current habitats. A cage experiment was conducted to assess prey immigration rate and the degree of predation effects on local prey density in relation to current velocity. The results of the experiment support, at least in part, our initial predictions: (1) prey immigration rates increase with current velocity and (2) the effects of fish predation on local prey density are reduced as current velocity increases. Overall results illustrated a link between the foraging modes of the stream gobies and their predation effects on local prey density: fish adopt ambush foraging in fast currents, where the decrease in prey density tends to be less, whereas fish actively forage over large areas in slow currents, where the decrease in prey is relatively large.  相似文献   

3.
Seasonal variation in the foraging behaviour of honeyeaters and the production of fruit were examined in relation to the flowering intensity of Banksia spinulosa over two flowering seasons. The abundance of inflorescences was greater in the mid than in the early and late periods of the flowering season. In the mid period, many plants were blooming and each plant had many flowering inflorescences. Inflorescences received most visits by honeyeaters in the early flowering period; the visitation rate declining as flowering progressed. Eastern spinebills were the most common floral visitors at all times during the season. The number of foraging probes made at inflorescences by eastern spinebills did not differ throughout the season. Foraging movements between inflorescences on the same plant were more frequent in the mid period than in the early and late periods. Long distance movements between plants (more than 10 m apart) were promoted by aggressive interactions between honeyeaters. Inflorescences flowering in the late period were less likely to develop follicles because there were fewer visits by birds and/or because resources had been allocated to inflorescences pollinated earlier in the season. The number of follicles produced per infructescence did not differ between flowering periods. Overall, the number of inflorescences produced per plant, the number of visits received per inflorescence and the proportion of inflorescences that developed follicles were greater in 1987 than in 1988.  相似文献   

4.
The foraging activity of Constrictotermes cyphergaster was investigated in the Caatinga of Northeast Brazil. Eight colonies were monitored for seven days, during both dry and wet seasons. Foraging activity occurred in exposed columns at night, generally between 22:00 and 05:00 h. During the wet season, foraging activity was significantly higher, with one bout every 1.6 ± 0.2 days, than the dry season, when foraging bouts were performed every 1.9 ± 0.3 days. Foraging activity throughout the study colonies presented high temporal synchronization. In both seasons, foraging was negatively correlated with air temperature and positively correlated with humidity. The foraging trails were often re-utilized and ranged from 1 to 18.5 meters in length. No difference between seasons in the area potentially utilized by the study colonies was observed. Approximately 51000 individuals participated in the foraging bout during the dry season, whereas some 87000 individuals participated in the foraging bout during the wet season. This corresponds to 43 and 74% of the estimated total nest population for the dry and wet seasons respectively. The average ratio soldiers:workers during foraging was 1:1.2 in the dry season and 1:2 in the wet season. The higher frequency and number of individuals foraging during the wet season in the present study are likely to be a strategy from C. cyphergaster to store energy reserves to be utilized during the dry season. Received 28 November 2005; revised 29 May 2006 and 16 August 2006; accepted 1 September 2006.  相似文献   

5.
Many large marine vertebrates are today threatened by human activities and it is therefore crucial to obtain information on their distribution and behaviour at sea. In particular little is known about the time necessary for juveniles to acquire the foraging skills of adults. We tracked 13 juvenile wandering albatrosses Diomedea exulans by satellite telemetry during their first year at sea. They covered an average distance of 184,000 km during the first year and restricted their dispersal to the unproductive waters of the subtropical Indian Ocean and Tasman Sea. This region of low wind velocities does not overlap with the foraging areas used by adults. After an innate phase of rapid dispersal with a fixed flight direction, young birds progressively increased their daily flight distances and attained adult flight efficiency within their first six months at sea. The complete overlap of the juveniles’ foraging ranges with major long‐line fisheries in the subtropical waters constitutes a major threat that could jeopardize the long term recovery ability of populations of the endangered wandering albatross in the Indian Ocean.  相似文献   

6.
Habitat selection in heterogeneous environments is assumed to allow diversification. Wide‐ranging species like pelagic seabirds present a paradox, in that their diversity appears difficult to reconcile with a frequent lack of geographical isolation between populations. We studied the foraging strategies of three closely related species of greater albatrosses, wandering albatross, Diomedea exulans, Amsterdam albatrosses D. amsterdamensis and royal albatross, D. epomophora, in relation to environmental heterogeneity at coarse‐grained and fine‐grained scales. During the incubation period the three species foraged at long distances from their colonies. We observed significant differences between the species in the duration of foraging trips and the distance travelled per day. There were significant differences in preference for habitat types in relation to bathymetric features, and in chlorophyll a concentrations in the waters traversed. Royal albatross preferred shallower waters (<1500 m depth), which were rich in chlorophyll (>0.5 mg/m3), while the other species spent on average 80% of their time in waters deeper than this, where chlorophyll levels were lower. Wandering albatrosses foraged in colder waters than Amsterdam albatrosses. Patterns of activity divided the species into two groups: those exploiting oceanic habitats (wandering and Amsterdam albatrosses) spent high proportions of time on the water (49%), and had on average 1.35 takeoffs and landings per hour, while royal albatross, which foraged mainly over neritic waters spent only 35% of their time sitting on the water, and made on average 2.6 takeoff per hour. Further, royal albatross showed a similar pattern of activity during all periods of the day, while wandering and Amsterdam albatrosses were mostly inactive during the night. We link these differences in activity to prey patch availability in two contrasting habitats – continental shelf areas compared to open ocean habitats. The divergent styles of foraging observed in this study suggest that these closely‐related and wide‐ranging species could effectively co‐exist by dividing the resources available to them by different modes of exploitation.  相似文献   

7.
For long‐distance migrants, territoriality and prey biomass during the non‐breeding season have been linked to body condition that can carry over to affect spring migration and breeding events. For Ovenbirds (Seiurus aurocapilla), studies in Jamaica showed that body condition in mid‐season depended on leaf litter prey biomass and declined seasonally as conditions became drier, and that individuals with sedentary (territorial) and wandering space‐use strategies did not differ in age or body condition. During October and November 2010–2011, we radio‐tracked Ovenbirds in Belize to determine if space‐use patterns differed with age and sex, if space‐use strategy influenced foraging behavior or body condition, and if areas used by wanderers and territory owners differed in food abundance or habitat characteristics. Most Ovenbirds (41 of 51, 80.4%) possessed small (1‐ha) territories with largely non‐overlapping cores, but 22.5% (10 of 51) of birds were wanderers (~7‐ha home range). Early season space use was predicted by age class, with most wanderers (90%, 9 of 10) being first‐year birds and most territory owners (63%) being older birds. Sex ratios of wanderers and territory owners did not differ. We found that wanderers may have been at a disadvantage because they had significantly lower foraging rates and lower relative body masses than territorial birds, although baseline corticosterone levels did not differ. Habitat characteristics of areas used by wanderers and territory owners did not differ nor did biomass of ground‐surface arthropods, likely because ranges of most wanderers overlapped those of territory owners. Using stable hydrogen isotopes in feathers, we found that first‐year Ovenbirds that were wanderers tended to have a more northern natal origins than sedentary birds, though the difference was not significant. Longer migration distances could delay arrival and reduce competitive ability. Our results suggest that wandering may not be an alternative and equally successful strategy, at least early in the season, and instead young birds may be competitively excluded from territory ownership.  相似文献   

8.
The simultaneous study of the temporal dynamics of foraging behaviour, diet and seed abundance is essential to assess the way in which resources affect the behaviour and ecology of harvester ants. Here, we evaluate how fluctuations in grass seed abundance during three consecutive growing seasons influenced the foraging behaviour and diet of the harvester ants Pogonomyrmex rastratus, P. mendozanus and P. inermis in the central Monte desert, Argentina. Seed abundance of the most consumed grasses varied greatly through ant activity season, and ants altered their foraging behaviour in response to those changes. Foragers spent more time travelling and searching for food, and their foraging trips took longer during the low seed availability season. Foraging distance was very similar among species and, contrary to our expectations, did not vary between seasons. Foraging success of P. rastratus and P. inermis increased during the high availability season. This matched the seasonal pattern of foraging activity, suggesting that colonies may detect seed abundance and regulate their foraging effort with the rate of forager success. Although grass seeds were the main item in the diet of the three species, P. mendozanus, and to a lesser extent P. rastratus, turned more generalist when grass seeds were scarce. In contrast, P. inermis showed a very narrow diet breadth, only harvesting grass seeds in both seasons. Our results indicate the relevance of seed availability on foraging behaviour of harvester ants, which should be taken into account when predicting and evaluating the effect of ants on seed resources as well as numerical responses of harvester ant populations to the temporal and spatial variations in grass seed abundance.  相似文献   

9.
The population ecology of the trichomycterid catfish, Trichomycterus itacarambiensis, from the Olhos d'Àgua Cave, Itacarambi Co., Minas Gerais, eastern Brazil, was investigated by the mark-recapture method during the dry season of 1994 (April to October). The cave is subject to a pronounced seasonality, and is flooded during part of the rainy period. All individuals captured along the 5000 m long stream gallery (divided in 50 sections) were marked by tattooing, measured and examined for the degree of pigmentation reduction. About one third of the population is truly albinic; the remainder may exhibit partial depigmentation. After five bimestrial collections, 583 specimens have been marked, of which 150 were recaptured at least once. Estimated population size was 1500–2000 individuals longer than 20 mm SL. The total population size of T. itacarambiensis is considered small when compared to those of epigean trichomycterids and of other studied cavefishes as well. Mean population density was 0.15–0.20 individuals m-2 throughout the dry season; it increased with the distance to the stream resurgence, probably due to the higher food availability upstream. This population density may be considered intermediate to those of other troglobitic fishes. Most recaptures (66%) were done in the same section as the previous capture. Active movements, both upstream and downstream, were recorded up to distances of 600 m; a few possibly passive, downstream movements covered distances from 900 to 1500 m. T. itacarambiensis catfishes move more frequently and for longer distances than the Brazilian blind pimelodids, Pimelodella kronei. Individual growth in T. itacarambiensis probably occurs in pulses, during the rainy seasons; interruption of growth in the dry season is attributed to the pronounced food shortage. The mean longevity was estimated as seven years. Differences between pigmented and albino individuals include a higher frequency of downstream movements and slightly higher growth rates in the latter.  相似文献   

10.
We studied the movements and foraging behaviour of Epomophorus gambianus and Rousettus aegyptiacus during the dry season in Rhodesia. The nightly activity of both species was concentrated in the riparian forest where they fed on the fruits of Diospyros senensis. Epomophorus gambianus roosted during the day high in the thick canopy of Trichelia emetica or Kigelia africana along the river banks and began foraging, each one in a preferred D. senensis shrub, before 1845 hrs. Rousettus aegyptiacus arrived in the study area approximately one hour later and appeared to forage in groups. The temporal separation of the feeding times of the two species of bats may provide a basis for the partitioning of a single species food resource.  相似文献   

11.
Spatial dynamics of foraging long-fingered bats (Myotis capaccinii) were studied in the Eastern Iberian Peninsula. We analysed the locations of 45 radio-tracked individuals during three discrete periods through the breeding season and measured the spatial parameters related to their foraging behaviour in order to test whether variations in spatial use occur. Colony range, measured as the minimum convex polygon through all the radiolocations, was 345 km2, but the area used during each period was smaller. During pre-breeding, foraging bats gathered at two stretches of different tributary rivers; during lactation, they scattered throughout the river system; and during weaning, they aggregated at a stretch of the main river. Individuals on average flew 5.7 km from roosts to foraging areas, with a maximum absolute distance of 22.7 km. Individual foraging ranges were measured linearly, because the bats foraged mostly along rivers; their values averaged 1.3 km/night and overlapped extensively between neighbouring bats (>65% on average). The sampling period, rather than the bats’ reproductive status, age, or sex, explained the observed variability in spatial distribution and size of hunting sites. We did not find differences in spatial parameters between lactating females and non-lactating bats, nor between juveniles and adults. This is the first study to split the independent effects of season and population class in order to enable unconfounded interpretations of the spatial dynamics of foraging reproductive females and juveniles. We speculate that the relationship between colony size and prey availability ruled the observed changes in foraging area through seasons. The considerable overlap in individual foraging ranges may be a necessary adaption to large colonies forced by the specific roost requirements of the long-fingered bat and the narrow foraging niche they appear to occupy.  相似文献   

12.
Despite a long historical record of radio-tracking analyses, basic home-range information is still lacking for most common waterfowl species, especially during the winter. We investigated how dabbling duck home ranges and daily foraging movements are influenced by extrinsic (site, temperature, date) and intrinsic factors (species, sex, age). We radio-tagged and monitored 125 individuals of three duck species (mallard Anas platyrhynchos, Eurasian teal A. crecca crecca and northern pintail A. acuta) in three French wetlands over four winters. Home-range sizes for a given species varied greatly among our study sites. Moreover, species differed according to home-range structure and distance traveled to reach their foraging grounds (teal had a more patchy home range and traveled farther distances than mallards). Foraging distances increased with temperature and time (over the winter season), but this effect differed among species, suggesting that they behave differently in response to food depletion and/or cold weather. The commuting behavior (i.e., the decision to leave the roost at night for foraging) differed among species and season. Teals were more risk-prone because they were more likely to leave the roost at night. In our study, ducks foraged at distances of 1–2 km from roosts, whereas distances of 2–48 km have been recorded in North America. We suggest that food supply, hunting pressure or population density may account for these inter-continental differences.  相似文献   

13.
Individual foraging site fidelity, whereby individuals repeatedly visit the same foraging areas, is widespread in nature, and likely benefits individuals through higher foraging efficiency and potentially, higher breeding success. It may arise as a consequence of habitat or resource specialisation, or alternatively, where resources are abundant or predictable, the partitioning of space might guarantee individuals exclusive foraging opportunities. We tracked seven adult great black‐backed gulls Larus marinus at a North Sea colony from early incubation to the end of the breeding season in 2016, providing a total of 1170 foraging trips over a mean ± SD tracking period of 67 ± 16 days. There was clear spatial segregation between individuals, with almost no overlap of their core areas (50% utilisation distribution) during incubation and chick‐rearing. Core areas were relatively small and there was high repeatability (R ± SE) in foraging parameters, including initial departure direction (0.73 ± 0.11), foraging range (0.41 ± 0.14) and cumulative distance travelled (0.19 ± 0.1) throughout the breeding season. Despite the low spatial overlap, there was little evidence of differential habitat use by individuals. The near‐exclusive individual foraging areas of this species, usually considered to be a generalist, indicate that where there is high resource availability throughout the breeding season and a small local population, individuals appear to adopt a territorial strategy which likely reduces intraspecific competition.  相似文献   

14.
1. Over 140 000 larvae of the case-building caddisfly Gumaga nigricula were self-marked as they incorporated glitter into small portions of their cases while reared in streamside troughs. These marked individuals were released into stream pools and their movements monitored in the dry season, when base flow was low and no spates occurred, and in the wet season when base flow was high and several spates occurred. 2. Of the 9,000–10 000 larvae released in each of two stream pools in the dry season, 4–20% (i.e. 377–1817 marked individuals) were observed on three sampling dates (4, 11 and 24 d after release). Most larvae (87–93%) remained within 4 m up- or downstream of the release line after 24 d. No larvae were found outside of the release pools, even after 37 d. 3. Of the > 120 000 larvae released in one stream pool near the beginning of the wet season, 408 larvae were recaptured 130–167 d later, a period that included 30 days of high flow associated with six spates. Estimated survivorship over this period was 0.7–6.2%; there was no relationship between survival and larval size at release. Most (75%) recaptured larvae were found in the pool where they were originally released. The remaining larvae were found downstream of the release pool. Larvae had generally dispersed only a short distance downstream of the release pool (median = 18 m, maximum = 222 m). In addition, four marked pupae were later found 436 m downstream of the release pool. 4. These results illustrate the sedentary nature of larval G. nigricula as well as the important role that high flow events play in larval mortality and dispersal. These case-building larvae move very little during low flow periods, even when food resources appear limiting. In contrast, the frequency and distance of larval dispersal are much greater during periods with high flow. 5. Our observations for G. nigricula support previously published inferences that larval dispersal within a stream can be limited for some aquatic insects. However, our observations also suggest that, even for a relatively sedentary species like G. nigricula, larval dispersal during periods with high flow may contribute significantly to gene flow within a stream reach.  相似文献   

15.
Individual consistency in foraging behaviour can generate behavioural variability within populations and may, ultimately, lead to species diversification. However, individual‐based long‐term behavioural studies are particularly scarce in seabird species. Between 2008 and 2011, breeding Imperial Shags Phalacrocorax atriceps at the Punta León colony, Argentina, were tracked with GPS devices to evaluate behavioural consistency during their foraging trips. Within a breeding season, individuals were highly consistent in the maximum distances they reached from the shore and the colony, as well as in the time invested in flight and diving across consecutive days during early chick rearing. In addition, each individual had its specific foraging area distinct from the foraging area of other individuals. Comparing between early and late chick rearing in the same season, individuals were consistent, to a lesser degree, in the maximum distance they reached from the colony and the shore, increasing in consistency later on in the season. Within the season, females were more consistent than males in the maximum distance they moved from the colony and the shore, the sexes segregated in their foraging areas and individual females were segregated from one another. Twenty‐eight individuals tracked in different breeding seasons were marginally consistent in their trip durations and maximum distance reached from shore across seasons. Among seasons, foraging locations differed between sexes and among individual females. Individuals from this colony exhibited consistency over time in several aspects of foraging behaviour, which may be due to a combination of individual characteristics such as learning abilities, breeding experience or health, as well as targeted prey type and stability of the environment at this location.  相似文献   

16.
  1. The platypus is a cryptic mammal that inhabits freshwater streams and rivers of eastern Australia. Tracking the movements of wild platypuses has been notoriously difficult due to the animals' morphology and methodological limitations. Knowledge of fine‐scale movements and interactions among individuals remain particularly poorly understood, as do responses to changes in hydrology.
  2. We tracked movements of 15 platypuses (six females, nine males) downstream of the Jindabyne Dam on the Snowy River, using externally attached acoustic transmitters (September–November 2017), to assess spatio‐temporal activity patterns among individuals and changes in movement and activity before and after an environmental flushing flow. As the study took place during the breeding season, we expected to observe overlap in area of activity among males and females, but not among males due to increased territoriality during these months. We also anticipated that a large flow event would impact their activity and foraging behaviour, possibly displacing platypuses downstream.
  3. Overlaps in area of activity and temporal co‐occurrence within a pool varied among individuals, with two resident males exhibiting some spatial overlap of activity and varying temporal co‐occurrence, despite tracking during the breeding season. All six tracked females were captured in the same pool and appeared to be residents, possibly highlighting preferences for certain habitats during the breeding months.
  4. We found no evidence that the movements of adult platypuses were affected by an environmental flushing flow, with no significant changes to area of activity, number of detections, or daily range of movements. However, foraging duration increased in the week after the flow, possibly associated with increased prey availability.
  5. These findings suggest that territoriality between males during and after the breeding season may depend on platypus density and resource availability and that pools with high resource availability may support several breeding females.
  相似文献   

17.
As industrial development increases in the range of barren-ground caribou (Rangifer tarandus granti) across the warming Arctic, the need to understand the responses of caribou to development and to assess the effectiveness of mitigation measures increase accordingly. The Central Arctic Herd (CAH) of caribou ranges across northern Alaska, USA, and the herd's summer range includes the Prudhoe Bay and Kuparuk oilfields, where the herd has been exposed to oil development for >4 decades. We used location data from global positioning system (GPS) radio-collars deployed on female CAH caribou for 106 collar-years, recording locations every 2 hours during 2008–2019, to examine caribou distribution and movements during 7 different seasons of the year in relation to infrastructure in the Kuparuk oilfield, which is characterized by more design improvements and mitigation measures than the older Prudhoe Bay oilfield. We examined movement metrics in terms of distance to gravel infrastructure (roads and pads) and time before and after movements across infrastructure (crossings). We also employed integrated step-selection analysis to compare caribou movements with random movements. Caribou distribution was influenced by insect activity, distance to coast, landcover, and terrain ruggedness, and we found large seasonal differences in caribou responses to infrastructure. Consistent with previous research findings, avoidance of areas near roads and pads was strongest during the calving season and some caribou used roads and pads as insect-relief habitat when oestrid flies (warble fly [Hypoderma tarandi] and nose bot fly [Cephenemyia trompe]) were active. Caribou moved through the Kuparuk oilfield repeatedly during summer, averaging >2 road or pad crossings a day when harassment by mosquitoes (Aedes [Ochlerotatus] spp.) and oestrid flies were the predominant factors influencing caribou movements. Caribou moved faster while crossing roads and pads but showed little pattern in speed or turn angle with distance to roads and pads. These results demonstrate that the effects of petroleum development on a caribou herd with long-term exposure to industrial activity vary widely by season. Maternal caribou avoid active roads and pads during calving, but the incorporation of appropriate mitigation measures in oilfield design allows caribou to move through the Kuparuk oilfield during other snow-free seasons. © 2020 The Wildlife Society.  相似文献   

18.
We hypothesize that foraging stream salmonids move during summer because (1) they monitor habitat conditions at a reach scale (100s of m), and (2) dominant fish move when conditions in their present foraging location become sub-optimal relative to conditions at other locations in the reach. To test these ideas, we quantified temporal variation in foraging habitat quality between late spring and early fall in a reach of a small Rocky Mountain brook charr, Salvelinus fontinalis, stream, predicted optimal-foraging fish distributions within the reach, and experimentally manipulated access to foraging sites and measured fish responses. Our results show that high-quality foraging sites were located at certain places in the reach during one period, but at different places during others, consistent with the hypothesis that fish movement is required if dominant fish are to occupy high-quality foraging sites throughout summer. The optimal foraging model was able to predict foraging locations within study pools, but not the exact location of individual fish within the pools or the reach. However, empirical evidence suggests that fish were distributed in order to maximize energy intake at the reach scale. Finally, dominant fish excluded from their preferred foraging location either left the pools (three of six cases), or began to occupy focal points of the next largest fish which, in turn, exited the pool (two of six cases). If habitat selection was occurring only within habitat units, then large fish, when excluded from their preferred locations, would select the next best locations within the pool. Taken together, these results suggest that charr use summertime movements to both monitor habitat conditions at a large spatial scale, and to gain access to optimal foraging locations even as conditions change temporally.  相似文献   

19.
Summary Seasonal foraging patterns were investigated using six observation colonies maintained in the Okavango Delta, Botswana. Pollen collection, flight from the hive, and recruitment for pollen and nectar sources occurred throughout the 11 months of the study. However, the distribution of foraging activity throughout the day changed seasonally. Colonies emphasized recruitment for pollen sites throughout most of the year. Brood production occurred in all months except May, and there was a significant, positive correlation between the proportion of recruitment activity devoted to pollen sources and the amount of brood comb in the colonies. The seasonal foraging patterns ofscutellata in the Okavango were similar to those of Africanized honey bees in the neotropics. The extended foraging season and emphasis on pollen collection may be associated with the high swarming rates and migrational movements of tropical honey bees.  相似文献   

20.
Blue tangs in Barbados exhibit three distinct social modes: territorial, schooling and wandering. We compared the mobility, foraging, aggression performed and received and the use of cleaning stations of adult blue tangs among modes and among habitats within a single fringing reef in Barbados. Evidence from observed switches during focal observations and multiple observations of tagged individuals indicate that fish are either territorial or non-territorial. Non-territorial fish formed schools and wandered. However, wandering can be used during solitary movements by fish in either type. Fish in the territorial mode, not previously described in adults of this species, restricted activity to a small area overlapping the territories of other tangs. They actively chased conspecifics and were chased mostly by damselfishes. They swam more slowly and fed at higher rates than other modes. Fish in the schooling mode ranged widely in compact, polarized groups of conspecifics, congeners and other species. They were not aggressive and were attacked mostly by damselfishes. They swam rapidly and fed at intermediate rates. Fish in the wanderer mode showed neither aggression nor association with other individuals. They swam rapidly, well above the substrate, fed little, were chased by conspecifics, ocean surgeonfish, A. bahianus, and damselfish and visited cleaning stations more often then other modes. All three modes were observed in all four main zones of the reef, and their behaviour changed quantitatively with habitat type. We suggest that territoriality reduces competition for algal food, schooling allows fish to overcome the food defence by damselfish, tangs and ocean surgeonfish, and wandering permits solitary movement over the reef to cleaning stations, feeding sites and other resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号