首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
AML1‐ETO, the most common fusion oncoprotein by t (8;21) in acute myeloid leukaemia (AML), enhances hematopoietic self‐renewal and leukemogenesis. However, currently no specific therapies have been reported for t (8;21) AML patients as AML1‐ETO is still intractable as a pharmacological target. For this purpose, leukaemia cells and AML1‐ETO‐induced murine leukaemia model were used to investigate the degradation of AML1‐ETO by melatonin (MLT), synthesized and secreted by the pineal gland. MLT remarkedly decreased AML1‐ETO protein in leukemic cells. Meanwhile, MLT induced apoptosis, decreased proliferation and reduced colony formation. Furthermore, MLT reduced the expansion of human leukemic cells and extended the overall survival in U937T‐AML1‐ETO‐xenografted NSG mice. Most importantly, MLT reduced the infiltration of leukaemia blasts, decreased the frequency of leukaemia stem cells (LSCs) and prolonged the overall survival in AML1‐ETO‐induced murine leukaemia. Mechanistically, MLT increased the expression of miR‐193a, which inhibited AML1‐ETO expression via targeting its putative binding sites. Furthermore, MLT decreased the expression of β‐catenin, which is required for the self‐renewal of LSC and is the downstream of AML1‐ETO. Thus, MLT presents anti‐self‐renewal of LSC through miR‐193a‐AML1‐ETO‐β‐catenin axis. In conclusion, MLT might be a potential treatment for t (8;21) leukaemia by targeting AML1‐ETO oncoprotein.  相似文献   

4.
5.
6.
7.
8.
9.
The t(8;21)(q22;q22) translocation, which fuses the ETO gene on human chromosome 8 with the AML1 gene on chromosome 21 (AML1-ETO), is one of the most frequent cytogenetic abnormalities associated with acute myelogenous leukemia (AML). It is seen in approximately 12 to 15% of AML cases and is present in about 40% of AML cases with a French-American-British classified M2 phenotype. We have generated a murine model of the t(8;21) translocation by retroviral expression of AML1-ETO in purified hematopoietic stem cells (HSC). Animals reconstituted with AML1-ETO-expressing cells recapitulate the hematopoietic developmental abnormalities seen in the bone marrow of human patients with the t(8;21) translocation. Primitive myeloblasts were increased to approximately 10% of bone marrow by 10 months posttransplant. Consistent with this observation was a 50-fold increase in myeloid colony-forming cells in vitro. Accumulation of late-stage metamyelocytes was also observed in bone marrow along with an increase in immature eosinophilic myelocytes that showed abnormal basophilic granulation. HSC numbers in the bone marrow of 10-month-posttransplant animals were 29-fold greater than in transplant-matched control mice, suggesting that AML1-ETO expression overrides the normal genetic control of HSC pool size. In summary, AMLI-ETO-expressing animals recapitulate many (and perhaps all) of the developmental abnormalities seen in human patients with the t(8;21) translocation, although the animals do not develop leukemia or disseminated disease in peripheral tissues like the liver or spleen. This suggests that the principal contribution of AML1-ETO to acute myeloid leukemia is the inhibition of multiple developmental pathways.  相似文献   

10.
11.
Notch is a transmembrane receptor that determines cell fates and pattern formation in all animal species. After specific ligand binding, the intracellular part of Notch is cleaved off and translocates to the nucleus, where it targets the DNA binding protein RBP-Jkappa. In the absence of Notch, RBP-Jkappa represses Notch target genes by recruiting a corepressor complex. We and others have previously identified SHARP as one component of this complex. Here, we show that the corepressor ETO as well as the leukemogenic fusion protein AML1/ETO directly interacts with SHARP, that ETO is part of the endogenous RBP-Jkappa-containing corepressor complex, and that ETO is found at Notch target gene promoters. In functional assays, corepressor ETO, but not AML1/ETO, augments SHARP-mediated repression in an histone deacetylase-dependent manner. Furthermore, either the knockdown of ETO or the overexpression of AML1/ETO activates Notch target genes. Therefore, we propose that AML1/ETO can disturb the normal, repressive function of ETO at Notch target genes. This activating (or derepressing) effect of AML1/ETO may contribute to its oncogenic potential in myeloid leukemia.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号