首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene conversion is referred to as one of two types of mechanisms known to act on gene families, mainly to maintain their sequence homogeneity or, in certain cases, to produce sequence diversity. The concept of gene conversion was established 20 years ago by researchers working with fungi. A few years later, gene conversion was also observed in the human genome, i.e. the γ-globin locus. The aim of this article is to emphasize the role of genetic recombination, particularly of gene conversion, in the evolution of the human β-like globin genes and further to summarize its contribution to the convergent evolution of the fetal globin genes. Finally, this article attempts to re-examine the origin and spread of specific mutations of the β-globin cluster, such as the sickle cell or β-thalassemia mutations, on the basis of repeated gene conversion events. Received: 13 February 1997 / Accepted: 15 May 1998  相似文献   

2.
3.
4.
mRNA and genomic DNA were isolated from adult Cylicocyclus nassatus, and the mRNA was reverse transcribed. The cDNA was PCR amplified using degenerate primers designed according to the alignment of the β-tubulin amino acid sequences of other species. To complete the coding sequence, the 3′ end was amplified with the 3′-RACE, and for amplification of the 5′ end the SL1-primer was used. The cDNA of the β-tubulin gene of C. nassatus spans 1429 bp and encodes a protein of 448 amino acids. Specific primers were developed from the cDNA sequence to amplify the genomic DNA sequence and to analyse the genomic organisation of the β-tubulin gene. The complete sequence of the genomic DNA of the β-tubulin gene of C. nassatus has a size of 2652 bp and is organised into nine exons and eight introns. The identities with the exons of the gru-1 β-tubulin gene of Haemonchus contortus range between 79% and 97%.  相似文献   

5.
6.
7.
The 2-microglobulin (2m) is a protein found in the serum in a free form and on the cell surface in a form noncovalently associated with the chain of the class I major histocompatibility complex (Mhc) molecules. In mammals, the 2m-encoding gene (B2m) is found on a chromosome different from the Mhc proper. We have isolated and characterized the B2m gene of the zebrafish, Brachydanio rerio, family Cyprinidae. We obtained both cDNA and genomic clones of the Brre-B2m gene. The cDNA clones contained the entire coding sequence, the entire 3 untranslated (UT) region, and at least part of the 5UT region. The genomic clone contained the entire Brre-B2m gene. The coding sequence specifies 97 amino acid residues of the mature protein so that the zebrafish 2m is two residues shorter than human and one residue shorter than cattle, fowl, or turkey 2m (codons at positions 85 and 86 have been deleted in the Brre-B2m. gene). The amino acid and nucleotide sequence similarities between zebrafish and human 2m (B2m) are 45% and 59%, respectively. Approximately 24% of the positions are invariant and an additional 9% show only conservative substitutions in comparisons which include all known 2m sequences (fish, avian, and mammalian). Most of the conserved positions are in the strands (some 47% of the -strand positions are conserved in the three vertebrate classes). The Brre-B2m gene consists of four exons separated by three introns. All of the introns are considerably shorter than the corresponding introns in the mammalian B2m genes. The coding sequences of the cDNA and the genomic clones are almost identical but the sequences of the 3'UT regions differ at 1.7% of the sites, suggesting that the genes borne by these clones might have diverged at least 0.7 million years (my) ago. In contrast to the human B2m gene, the Brre-B2m gene shows no bias in the distribution of the CpG dinucleotides: the dinucleotides are distributed evenly along the entire available sequence. The haploid genome of the zebrafish contains only one copy of the B2m gene.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers L05383 (B2M) and L05384 (B2RG). Correspondence to: J. Klein.  相似文献   

8.
9.
10.
Restriction fragment analysis has been applied to genomic DNA extracted from human tumor cell lines. Polymorphic restriction fragments encompassing the HLA-DQ gene were observed upon digestion with Bgl II, Eco RI, and Hind III. Analysis of these polymorphic fragments (or allogenotopes) showed that for each restriction enzyme a series of three differently sized allogenotopes existed. Clusters of cosegregating allogenotopes belonging to the different allelic series defined three different allogenotypes. Each allogenotype exhibited a distinctive restriction map generated by digestion with five restriction enzymes. Comparison of these restriction maps showed that generation of the polymorphisms observed at the HLA-DQ region in these sets of cell lines is not caused by a single event. In some B- and T-lymphoma cell lines a fourth allogenotype was found. The restriction site map of genomic DNA from these cell lines suggested that the latter distribution of restriction enzyme sites was most probably generated by recombination between two of the previously observed allogenotypes at a crossover site(s) adjacent to the HLA-DQ gene.  相似文献   

11.
Stargardt's disease is an autosomal recessive infantile macular degeneration of unknown origin whose gene has been recently mapped to chromosome 1p21-p13 by linkage analysis in eight multiplex families. Since the cone-specific -subunit of the transducin gene (GNAT2) has been mapped to chromosome 1p13, we tested GNAT2 as the disease-causing gene in our series. Using a novel intragenic polymorphism, we show here that GNAT2 is most probably located centromeric to the genetic interval encompassing the disease gene (D1S424-D1S236, location score = 3.54). In addition, single-strand conformation polymorphism and sequence analyses of the eight exons of the GNAT2 gene was performed in our probands. No evidence of a deleterious base substitution was observed in any affected individual. Taken together, these results support the exclusion of GNAT2 as the causal disease gene of Stargardt's disease.  相似文献   

12.
13.
14.
AMP-activated protein kinase (AMPK) represents the mammalian form of the core component of a kinase cascade that is conserved between fungi, plants, and animals. AMPK plays a major role in protecting mammalian cells from metabolic stress by switching off biosynthetic pathways that require ATP and switching on ATP-regenerating pathways. In this report, we describe the isolation and characterization of the gene for the noncatalytic bovine gamma1 subunit of AMPK. The bovine ampkgamma1 (PRKAG1) gene spans in excess of 14 kb and is located at BTA 5q21-q22. It consists of 12 exons ranging in size from 38 b to 166 b, interspersed with 11 introns that range between 97 b and 6753 b in length. The coding region of the bovine gene shares 93% and 90% nucleotide sequence similarity with its human and rat counterparts, and the bovine AMPKgamma1 protein is 98% and 95% identical to its human and rat homologs, respectively, in amino acid sequence. SNP discovery using a cattle DNA panel revealed a number of polymorphisms that may be useful for the evaluation of ampkgamma1 as a candidate gene for energy metabolism-related production traits.  相似文献   

15.
Molecular Genetics and Genomics - A series of λ derivatives carrying tof mutations were tested for their ability to give rise to plasmid λ dv. Phages carrying tof mutations that distorted...  相似文献   

16.
17.
18.
19.
Culture–gene coevolutionary theory posits that cultural values have evolved, are adaptive and influence the social and physical environments under which genetic selection operates. Here, we examined the association between cultural values of individualism–collectivism and allelic frequency of the serotonin transporter functional polymorphism (5-HTTLPR) as well as the role this culture–gene association may play in explaining global variability in prevalence of pathogens and affective disorders. We found evidence that collectivistic cultures were significantly more likely to comprise individuals carrying the short (S) allele of the 5-HTTLPR across 29 nations. Results further show that historical pathogen prevalence predicts cultural variability in individualism–collectivism owing to genetic selection of the S allele. Additionally, cultural values and frequency of S allele carriers negatively predict global prevalence of anxiety and mood disorder. Finally, mediation analyses further indicate that increased frequency of S allele carriers predicted decreased anxiety and mood disorder prevalence owing to increased collectivistic cultural values. Taken together, our findings suggest culture–gene coevolution between allelic frequency of 5-HTTLPR and cultural values of individualism–collectivism and support the notion that cultural values buffer genetically susceptible populations from increased prevalence of affective disorders. Implications of the current findings for understanding culture–gene coevolution of human brain and behaviour as well as how this coevolutionary process may contribute to global variation in pathogen prevalence and epidemiology of affective disorders, such as anxiety and depression, are discussed.  相似文献   

20.
Classical MHC molecules present processed peptides from endogenous protein antigens on the cell surface, which allows CD8(+) cytotoxic T lymphocytes (CTLs) to recognize and respond to the abnormal antigen repertoire of hazardous cells, including tumor cells. The light chain, β2-microglobulin (β2m), is an essential constant component of all trimeric MHC class I molecules. There is convincing evidence that β2m deficiency generates immune escape phenotypes in different tumor entities, with an exceptionally high frequency in colorectal carcinoma (CRC) and melanoma. Damage of a single β2m gene by LOH on chromosome 15 may be sufficient to generate a tumor cell precommitted to escape. In addition, this genetic lesion is followed in some tumors by a mutation of the second gene (point mutation or insertion/deletion), which produces a tumor cell unable to express any HLA class I molecule. The pattern of mutations found in microsatellite unstable colorectal carcinoma (MSI-H CRC) and melanoma showed a striking similarity, namely the predominance of frameshift mutations in repetitive CT elements. This review emphasizes common but also distinct molecular mechanisms of β2m loss in both tumor types. It also summarizes recent studies that point to an acquired β2m deficiency in response to cancer immunotherapy, a barrier to successful vaccination or adoptive cellular therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号