首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deadwood-associated species are increasingly targeted in forest biodiversity conservation. In order to improve structural biodiversity indicators and sustainable management guidelines, we need to elucidate ecological and anthropogenic drivers of saproxylic diversity. Herein we aim to disentangle the effects of local habitat attributes which presumably drive saproxylic beetle communities in temperate lowland deciduous forests. We collected data on saproxylic beetles in 104 oak and 49 beech stands in seven French lowland forests and used deadwood, microhabitat and stand features (large trees, openness) as predictor variables to describe local forest conditions. Deadwood diversity and stand openness were consistent key habitat features for species richness and composition in deciduous forests. Large downed deadwood volume was a significant predictor of beetle species richness in oak forests only. In addition, the density of cavity- and fungus-bearing trees had weak but significant effects. We recommend that forest managers favor the local diversification of deadwood types, especially the number of combinations of deadwood positions and tree species, the retention of large downed deadwood and microhabitat-bearing trees in order to maximize the saproxylic beetle diversity at the stand scale in deciduous forests. To improve our understanding of deadwood-biodiversity relationships, further research should be based on targeted surveys on species-microhabitat relationships and should investigate the role of landscape-scale deadwood resources and of historical gaps in continuity of key features availability at the local scale.  相似文献   

2.
Deadwood is a key indicator for assessing policy and management impacts on forest biodiversity. We developed an approach to include deadwood in the large-scale European Forest Information Scenario (EFISCEN) model and analysed impacts of intensifying forest biomass removal on the amount and type of deadwood in forests of 24 European Union member states. In EFISCEN, deadwood consists of standing and downed deadwood, resulting from mortality, and stem residues from felling activities. To include deadwood in EFISCEN we developed mortality functions and re-estimated the model's increment functions. Further, we modelled the development of standing deadwood. Decomposition of downed deadwood and stem residues was modelled through the soil model YASSO. We used the extended model to analyse the impacts of a baseline scenario (no policy changes, a moderate increase in wood removals and no extraction of residues) and a bio-energy scenario (an increase of wood and residue removals to the maximum potential) on deadwood in 2030. In our baseline scenario the average amount of deadwood was 12.3 ton ha?1 in 2005 and increased by 6.4% in 2030. Intensified biomass removal could fully counteract this development and lead to a reduction of 5.5% in 2030 below the levels in 2005. The type of deadwood changed as well; residue removal led to a general decrease in the amount of smaller deadwood fractions (i.e. stem residues). Further, if felling levels are increased as in our bio-energy scenario, a decrease can be expected in the amount of standing deadwood and of large-diameter deadwood. We conclude that without additional management measures to protect deadwood, intensification of biomass removal could negatively affect deadwood-dependent species, which constitute an important part of biodiversity in European forests.  相似文献   

3.
Deadwood is widely recognized to be an important issue for biodiversity conservation in forest ecosystems. Establishing guidelines for its management requires a better understanding of relationships between woody debris characteristics and associated species assemblages. Although deadwood diameter has been identified as an important factor predicting occurrence of many saproxylic species, the boundary between small and large diameter has not yet been precisely defined. In commercial forests, it is also of critical importance to know which diameter is large enough to host the beetle species associated with large logs in order to ensure cost-effectiveness of biodiversity conservation measures. We investigated the differences in saproxylic beetle assemblages among four different diameter classes of downed woody oak and maritime pine debris, in France. Beetles were sampled using in situ emergence traps. The diameter of deadwood pieces ranged from 1 to 40 cm. No patterns of nestedness associated with the gradient of diameter size were identified for either tree species. More indicator saproxylic species were observed in large logs and branches than in small logs. A clear distinction appeared in assemblage composition around the 5-cm diameter threshold whereas no similar pattern occurred around the 10 cm value, i.e. the classical threshold used in forestry to distinguish fine woody debris from coarse woody debris. For both tree species, the mean body length of beetles increased with the diameter of deadwood suggesting that the quantity of available resources per piece may constitute a limiting factor for large beetle species. This study confirms that not only large deadwood pieces are relevant for saproxylic biodiversity conservation but also the smallest pieces. Therefore, forest managers would be well advised to maintain a high diversity of deadwoods to maintain saproxylic biodiversity.  相似文献   

4.
Abstract

The fundamental ecological significance of deadwood decomposition in forests has been highlighted in several reviews, some conclusions regarding silviculture being drawn. Old‐growth forests are natural centres of biodiversity. Saproxylic fungi and beetles, which are vital components of these ecosystems, occupy a variety of spatial and trophic niches. Fungal and beetle diversity on coarse woody debris (CWD) was analysed in 36 forest sites in the Cilento and Vallo di Diano National Park, Italy. The data were analysed by DCA and Spearman’s rank correlation. The results provide empirical evidence of the existence of a pattern of joint colonization of the woody substrate by fungi and beetles, which includes an assemblage of reciprocal trophic roles within fungal/beetle communities. These organisms act together to form a dynamic taxonomical and functional ecosystem component within the complex set of processes involved in wood decay. The variables most predictive of correlations between management‐related structural attributes and fungal/beetle species richness and their trophic roles for old‐growth forest are: number of logs, number of decay classes and CWD total volume. Deadwood spatio‐temporal continuity should be the main objective of forest planning to stop the loss of saproxylic fungal and insect biodiversity.  相似文献   

5.
Saproxylic beetles may act as bio-indicators of high-quality mature woodlands, and their conservation is strongly linked to the quality and quantity of deadwood in a biotope. We tested the effect of deadwood accumulation and habitat variables on saproxylic species richness by investigating six sampling sites under different deadwood management practices that belong to both alluvial and riparian mixed forests of the Po plain, Italy. We sampled 43 obligate saproxylic species. The main factor predicting saproxylic species richness was the amount of deadwood measured by both log diameter and volume. We found a threshold of 0.22 m diameter (confidence interval CI 0.18–0.37 m) and 32.04 m3/ha volume (CI 16.09–64.09 m3/ha) below which saproxylic beetle richness would be significantly reduced and a threshold of 35 m3/ha dead wood volume (CI 33–40 m3/ha) over which species richness increases by <5 %. The other deadwood and environmental components influenced saproxylic beetle richness to a lesser extent; some of them, however, should still be considered for proper management. Forest structure variables describing forest density such as large trees and basal areas have a negative effect on species richness. According to the results of our study, stumps and advanced decaying class are positively correlated, while small logs are negatively correlated to species richness. Thus, in extensively managed forests, the regular cutting of trees should be implemented to create artificial stumps, in order to assure a continuity of deadwood and, in the meantime, increase the number and width of openings in the forest. Moreover, prolonging rotation times can assure the presence of deadwood at intermediate/later stages of decay.  相似文献   

6.
With a growing number of forest biodiversity indicators being applied in forest policy documents and even more being suggested by the scientific community, there is a need to evaluate, review and critically assess the strength of evidence for individual indicators, their interrelationships and potential overlaps and gaps. Biodiversity indicators proposed for forest ecosystems in Europe were reviewed with the overarching aim of providing advice on strategic selection and combination of indictors. The objectives were to (1) establish interrelationships between indicators and their indicandum (i.e. the indicated aspect of biodiversity); (2) assess the strength of scientific evidence for individual indicators; and (3) identify a set of indicators with confirmed validity for further scientific testing and inclusion in long-term reporting and decision-making regarding forest biodiversity. Ten indicator groups and 83 individual indicators were identified with application from stand scale up to landscape scale in 142 eligible scientific papers. In 62 of the 142 studies no statistical correlations between indicator(s) and indicandum were performed and 42 (out of the 62) did not even present a clear indicandum. In the remaining 80 studies, 412 correlations between indicator and indicandum were identified. However, only six correlations were assessed as being supported by strong evidence, i.e. three or more studies found statistical correlation between the indicator and indicandum, and no studies reported contradictory results. For the species richness relationships, there was strong evidence for positive correlations between deadwood volume and wood-living fungal species richness; deadwood volume and saproxylic beetle species richness; deadwood diversity and saproxylic beetle species richness; age of canopy trees and epiphytic lichen species richness. There was strong evidence for a negative correlation between tree canopy cover and spider species richness. Concerning species composition-related correlation, there was strong evidence that the species composition of epiphytic lichens changed with the age of canopy trees. These results imply that the validity of most indicators on which monitoring and conservation planning are based are weakly scientifically supported and that further validation of current biodiversity indicators for forest ecosystems is needed.  相似文献   

7.
Ancient forests are of considerable interest for strategies for biodiversity conservation. However, in European forest landscapes fragmented and harvested for a long time forest continuity might be no longer a key driver for flying organisms such as saproxylic beetles. In a study based on paired samples (n = 60 stands, p = 180 traps) of ancient and recent forests, we investigated the effects of forest continuity on saproxylic beetle assemblages in two French regions. Mean species richness was significantly related with deadwood volume in ancient forests, but not in recent forests. This loss of relationship between assemblages and their environment suggests that dispersal limitation is at work, at least for some species. Forest continuity had a significant effect on mean species richness and on the mean number of common species, but not on rare species. Forest continuity had a significant effect on assemblage composition in one out of the four cases tested. In both regions, we identified species associated with either recent or ancient forests. Finally, mean body size of species was significantly smaller in recent forests compared with ancient ones, as was their tree diameter preference, despite a higher volume of large deadwood in recent forests. These results lend support to using forest continuity as a criterion to identify sites of conservation importance, even in highly fragmented landscapes.  相似文献   

8.
Urbanization is increasing worldwide and is regarded a major threat to biodiversity in forests. As consequences of intensive human use, the vegetation structure of naturally growing urban forests and their amount of deadwood can be reduced. Deadwood is an essential resource for various saproxylic insects and fungi. We assessed the effects of urbanization and forest characteristics on saproxylic insects and fungi. We exposed standardized bundles consisting of each three freshly cut beech and oak branches in 25 forests along a rural–urban gradient in Basel (Switzerland). After an exposure of 8 months, we extracted the saproxylic insects for 10 months using an emergence trap for each bundle. We used drilling chips from each branch to determine fungal operational taxonomic units (OTUs). In all, 193,534 insect individuals emerged from the experimental bundles. Our study showed that the abundance of total saproxylic insects, bark beetles, longhorn beetles, total flies, moths, and ichneumonid wasps decreased with increasing degree of urbanization, but not their species richness. However, the taxonomic composition of all insect groups combined was altered by wood moisture of branches and that of saproxylic beetles was influenced by the degree of urbanization. Unexpectedly, forest size and local forest characteristics had a minor effect on saproxylic insects. ITS (internal transcribed spacer of rDNA) analysis with fungal specific primers revealed a total of 97 fungal OTUs on the bundles. The number of total fungal OTUs decreased with increasing degree of urbanization and was affected by the volume of naturally occurring fine woody debris. The composition of fungal OTUs was altered by the degree of urbanization and pH of the branch wood. As a consequence of the altered compositions of saproxylics, the association between total saproxylic insects and fungi changed along the rural–urban gradient. Our study shows that urbanization can negatively impact saproxylic insects and fungi.  相似文献   

9.
Ecology of the saproxylic beetles in mountain forests of the northern French Alps. Both saproxylic beetles and deadwood stocks were studied in order to detect special deadwood features important for these organisms, and to better understand their ecology. A total of 37 window traps were used in ten stations covering four mountain forests in the French northern Alps. In the same time, the deadwood stocks were inventoried in the ten stations. 181 m3 of deadwood (1219 fragments) were measured and 4268 individuals belonging to 235 saproxylic species were trapped. The deadwood volume ranges from 21.1 to 233.6 m3/ha and the number of beetle species from 27 to 113. A positive relation was observed between the stand age, the whole volume of deadwood and the species richness of saproxylic beetles. However, in some deadwood rich sites the beetle diversity is not as high as expected. This was explained by the negative influence of the management history of the forest. The compositions of saproxylic communities depend also of some characteristics of the deadwood stocks. Xylophagous and zoophagous species prefer “not lying and recently dead softwood” while the mycophagous and saproxylophagous species are strongly dependent on fungi growing on hardwood, respectively under “large surfaces of barks” and in “large woody debris”. Surprisingly, the majority of the saproxylic beetles living on softwood does not depend on the most represented resinous deadwood type: the “decayed and lying softwood”.  相似文献   

10.
Understanding the processes that shape biodiversity patterns is essential for ecosystem management and conservation. Local environmental conditions are often good predictors of species distribution and variations in habitat quality usually positively correlate to species richness. However, beside habitat limitation, species presence-absence may be constrained by dispersal limitation. We tested the relative importance of both limitations on saproxylic beetle diversity, using forest continuity as a surrogate for dispersal limitation and stand maturity as a surrogate for habitat limitation. Forest continuity relies on the maintenance of a forest cover over time, while stand maturity results in the presence of old-growth habitat features. Forty montane beech-fir forests in the French pre-Alps were sampled, under a balanced sampling design in which forest continuity and stand maturity were crossed. A total of 307 saproxylic beetle species were captured using flight-interception traps and Winkler–Berlese extractors. We explored the response of low- versus high-dispersal species groups to forest continuity and stand maturity. Saproxylic beetle diversity increased significantly with stand maturity and was mostly influenced by variables related to deadwood diversity at the stand scale and suitable habitat availability at the landscape scale. Surprisingly, no evidence of dispersal limitation was found, as diversity patterns were not influenced by forest continuity and associated variables, even for low-dispersal species. Our study demonstrates that in an unfragmented forest landscape, saproxylic beetles are able to colonize recent forests, as long as local deadwood resources are sufficiently diversified (e.g. tree species, position, diameter and/or decay stage).  相似文献   

11.
The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood‐associated species. This is especially alarming given the important role wood‐inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad‐leaved‐dominated, herb‐rich forests are threatened habitats which have high wood‐inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man‐made afforested fields are novel habitats that could potentially be important for wood‐inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood‐inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb‐rich forests, four birch‐dominated wood pastures, and four birch‐dominated afforested field sites in central Finland. As predicted, natural herb‐rich forests were the most species‐rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications: In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man‐made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood‐associated species, and thus complement the existing conservation network of natural forests.  相似文献   

12.
There have been numerous attempts to synthesize the results of local‐scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local‐scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome–driver combinations we have identified as most critical in terms of where local‐scale species richness change studies are lacking include the following: land‐use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local‐scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.  相似文献   

13.
There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.  相似文献   

14.
Decomposition transfers carbon (C) from detrital organic matter to soil and atmospheric pools. In forested ecosystems, deadwood accounts for a large proportion of the detrital C pool and is primarily decomposed by wood-inhabiting fungi (WIF). Deadwood reductions linked to forest harvesting may alter WIF richness and composition, thus indirectly influencing the persistence of deadwood and its contribution to C and nutrient cycling. Forest structure was enhanced via canopy gap creation and coarse woody debris (CWD) addition that mimic natural disturbance by windfall within a deciduous northern hardwood forest (Wisconsin, USA) to examine its effect on deadwood-associated biodiversity and function. Experimental sugar maple (Acer saccharum) logs were sampled, for DNA extraction, ten years after placement to determine the assembly of fungal community composition and its relationship to wood decay rates.Our findings suggest that the WIF community responded to gap disturbance by favoring species able to persist under more extreme microclimates caused by gaps. CWD addition under closed canopy tended to favor a different species assemblage from gap creation treatments and the control, where canopy was undisturbed and CWD was not added. This was presumably due to consistent microclimatic conditions and the abundance of CWD substrates for host specialists. Fungal OTU richness was significantly and inversely related to CWD decay rates, likely due to competition for resources. In contrast, fungal OTU composition was not significantly related to CWD decay rates, canopy openness or CWD addition amounts. Our study site represents a diverse fungal community in which complex interactions among wood-inhabiting organisms and abiotic factors are likely to slow CWD decomposition, which suggests that maintaining a biodiverse and microsite-rich ecosystem may enhance the capacity for C storage within temperate forests.  相似文献   

15.
Wood-decaying polypores are macrofungi with the capacity to decompose lignocellulose, and hence play essential roles in forest ecosystems. Host (tree species) range and preference are among the most important factors influencing polypore communities. Here, we studied polypore ecological patterns between gymnosperm and angiosperm trees based on data collected from more than 10 yr field investigations in Fenglin and Changbaishan Nature Reserve, northeast China (boreal and temperate zone). Although species richness was similar between the polypores associated with the two tree groups, gymnosperm trees showed: (1) a higher similarity in polypores species; (2) a lower polypore species richness on fallen trunks; (3) a lower polypore species richness in unprotected forests; (4) fewer common polypores but more occasional species; (5) a lower proportion of white rot but a higher proportion of brown rot polypores. In general, our findings supported previous views that different preferences between gymnosperm and angiosperm trees in polypores are probably caused by different structure and content of lignins between the two tree groups.  相似文献   

16.
17.
Deadwood is an important component for conserving carbon stock and maintaining species diversity. Scarce information is, at present, available concerning the amount and composition of deadwood in Mediterranean-type ecosystems. In this study, 21 sites were chosen to characterize different forest types among representative managed and unmanaged stands in the Central Apennines (Molise, Italy). Data were collected to assess living tree and deadwood volumes, and the relative abundance of different deadwood components in decay classes. The information gathered was related to human-induced disturbances on a regional scale. There were substantial differences in the deadwood volumes between managed and unmanaged stands, although this was not the case in the living tree volumes. Deadwood volumes were larger in unmanaged than in managed stands. In particular, large amounts of deadwood were found in managed Mediterranean and Anatolian fir forests, probably due to minimal management practices. Dead downed trees were less represented in managed forests as they are normally removed to facilitate logging activities. Logs occurred more frequently in managed stands as logging residues left on site. Most deadwood material belonged to early decay classes. Proportionally larger amounts of deadwood ascribed to class 1 in managed stands correlated with recent cutting activities. The relatively large amounts of deadwood attributed in unmanaged stands to class 3 demonstrate its longer persistence in unmanaged forests. This study represents a first systematic analysis of deadwood occurrence in a typical Mediterranean forest area, and should be useful in defining important objectives for sustainable forest management.  相似文献   

18.
Forest degradation is leading to widespread negative impacts on biodiversity in South-east Asia. Tropical peat-swamp forests are one South-east Asian habitat in which insect communities, and the impacts of forest degradation on them, are poorly understood. To address this information deficit, we investigated the impacts of forest gaps on fruit-feeding butterflies in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. Fruit-baited traps were used to monitor butterflies for 3 months during the 2009 dry season. A network of 34 traps (ngap = 17, nshade = 17) was assembled in a grid covering a 35 ha area. A total of 445 capture events were recorded, comprising 384 individuals from 8 species and 2 additional species complexes classified to genera. On an inter-site scale, canopy traps captured higher species richness than understory traps; however, understory traps captured higher diversity within each site. Species richness was positively correlated with percent canopy cover and comparisons of diversity indices support these findings. Coupled with results demonstrating morphological differences in thorax volume and forewing length between species caught in closed-canopy traps vs. those in gaps, this indicates that forest degradation has a profound effect on butterfly communities in this habitat, with more generalist species being favored in disturbed conditions. Further studies are necessary to better understand the influences of macro-habitat quality and seasonal variations on butterfly diversity and community composition in South-east Asian peat-swamp forests.  相似文献   

19.
Design and establishment of ecologically good networks of conservation areas often requires quick assessments of their biodiversity. Reliable indicators would be useful when doing such assessments. In order to explore the potential indicators for species richness in boreal forests, we studied (1) the co-variation of species richness and composition of species assemblages among beetles, polypores, birds and vascular plants, (2) the relationships between species richness and four boreal forest site types, (3) the relationship between species richness and forest physical structure and (4) the suitability of potential indicator groups within the four taxa to predict the species richness generally. The data show that there are probably not a single taxonomic or forest structural characteristic to be used as a general biodiversity indicator or surrogate for all the species. The correlations in species richness among the four taxa studied were low. However, group-specific indicators were obvious: forest site type was a good surrogate for vascular plant richness, and quantity and quality of dead wood predicted the species richness of polypores. The results support the view that different indicators shall be used for different forest types and taxonomic groups. These indicators should facilitate relatively rapid methods to assess biodiversity patterns at the forest stand level.  相似文献   

20.
Biodiversity conservation of forest ecosystems strongly relies on effective dead wood management. However, the responses of saproxylic communities to variations in dead wood characteristics remains poorly documented, a lack of knowledge that may impede the development of efficient management strategies. We established the relationship between saproxylic beetles—at the species and community levels—and attributes of black spruce and balsam fir in old-growth boreal forests. The relationship was first evaluated for individual snag bole segments, and then for forest stands. A total of 168 bole sections were collected in summer 2006 along a compositional gradient ranging from black spruce-dominated stands to balsam fir-dominated ones, in a boreal forest dominated by >90-year-old stands. A total of 16,804 beetles belonging to 47 species emerged from bole segments, with 21% of the species being found exclusively in black spruce snags and 36% exclusively in balsam fir snags. Black spruce and balsam fir snags thus contributed differently to forest biodiversity by being inhabited by different saproxylic communities. Wood density was an important attribute in the host-use patterns for several species of saproxylic beetles, but no relationship was found between snag availability within stands and abundance of beetles strongly linked to either black spruce or balsam fir. Our study outlines the relative contribution of tree compositional diversity to saproxylic species, while highlighting the contribution of black spruce and balsam fir to animal diversity in old-growth boreal forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号